Ankertechnik

Inhaltsverzeichnis

K5B° Seidstdonranker	4
KSB®-Übersicht	4
KSB® Selbstbohranker	5
KSB® Technische Daten	6
KSB® Bohrkronen	8
KSB® Zubehör	9
KSB® Anker	10
KSB® Mini-Jet-Arbeiten	12
KSB® Anwendungsgebiete	14
Permanente Selbstbohrsysteme KSB® Duplex-System	16
KSB® INOX	18
KÜPS® Permanent System Der Aufbau des KÜPS®	20
KÜPS® Technische Daten	22
KÜPS® Permanent nach SIA 267	23
KÜPS® Zubehör	24
Bohren, Versetzen, Verpressen, Prüfen	25
Feldversuch	26
KÜPS® Dauerüberwachung	27
Mikropfähle permanent	28
Bodennägel permanent	29
KÜBOLT®	30
KÜBOLT® Technische Daten	31
KÜROR®	<i>33</i>
KÜROR® Pfahlsystem	33
KÜROR® Technische Daten	34
KÜROR® Grundlagen	36
KÜROR® und KSB® im Vergleich	38

KESA Erdspreizanker	<i>39</i>
Anker und Zubehör / Versetzwerkzeuge	39
Ankerzubehör	41
Injektionsschläuche und Adapter	41
Strumpf und Federkorbdistanzhalter	42
Injektionsmörtel / Bindemittel	44
Anker und Pfähle	45
Kraftmessdosen	47
Anker- und Kraftmessgeräte	47
K Ankermesstechnik	48
K Ankermesstechnik	48
Begriffe Ankerspannprobe	49
Prüfen von ungespanntem Anker	50
Prüfen von vorgespanntem Anker	51
Ankermessausrüstung	53
Prüfen von Mikropfählen	54
Bezeichnungen	55
Übersicht Injektionsanlagen	<i>57</i>
Anfahrt	<i>60</i>

KSB®-Übersicht

Selbstbohrend				
Anwendungen				
[↓] Druck				
Z Zug				
Vorgespannt				
[↓] Druck /Zug				
Permanent Zug				
Schutzstufe 2			2b	

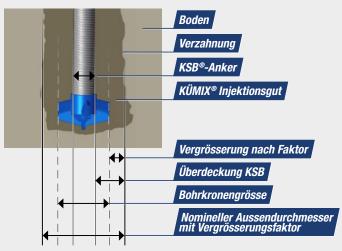
Technische Daten

Schutzstufe 3

Durchgehendes Gewinde					
Bruchlast	2000 kN	2600 kN	2600 kN	950 kN	1400 kN
Durchmesser	32 – 114 mm	32 – 76 mm	32 – 76 mm	32 – 51 mm	32 – 64 mm

KSB® Selbstbohranker

System im Einsatz



Das *KSB®* (Küchler Selbst-Bohrsystem) ist ein selbstbohrendes Ankersystem mit durchgehendem Aussengewinde, das ohne Verrohrung in lockere Böden und Fels bei gleichzeitigem Verpressen eingebohrt werden kann.

Dem *KSB*[®] System liegen die üblichen Bohrstangengewinde R 32, R 38, R 51, T64, T76 und T114 bis zu Lasten von Fyk 2 100 kN auf Zug und Druck zugrunde.

Eine Vielzahl untereinander kompatibler Systemkomponenten garantieren unterschiedlichste Anwendungsgebiete wie z.B., Zug, Druck, Schlaf, Vorgespannt, Permanent oder als Jetsystem.

Ihre Vorteile

- Keine Verrohrung erforderlich
- Schnelle Versetz-Zeit
- Selbstbohrendes System
- Schnelle Belastung
- Bohren und Injizieren in einem Arbeitsgang
- Durchgehendes und Hochfestes Gewinde

KSB® Technische Daten

Qualitätsnachweis durch Rückverfolgbarkeit EN 10204: 2004

Schwach Standard O Stark Sehr Stark

						— Gewin	derichtung	j links —					-	— Gewind	erichtung	rechts —	
						3	-						-				
		R32/22	R32/20	R32/17	R32/15	R38/17	R38/15	R51/35	R51/28	R51/25	T64/42	T64/36	T76/59	T76/55	T76/51	T76/41	T114/92*
Bruchlast Ftk	kN	250	295	360	400	500	580	660	800	1 000	1 200	1 400	1 100	1 300	1 600	2 000	2 050
Streckgrenze F _{yk} ³	kΝ	200	240	300	340	400	450	540	630	800	1 000	1 100	850	1 000	1 200	1 600	1 650
Zugfestigkeit ftk3	N/mm²	720	720	700	700	700	700	700	700	760	730	740	650	650	650	750	640
Fliessgrenze f _{yk}	N/mm²	580	580	600	600	600	600	600	600	600	600	580	520	520	520	580	520
Nennaussendurch- messer ²	mm	32	32	32	32	38	38	51	51	51	64	64	76	76	76	76	114
Wandstärke	mm	5	6	7.5	9	8.5	9.5	8	9.5	12.5	11	13	8	10	12.5	16	10
Nennquerschnitt 1 A	mm²	360	420	530	580	740	800	950	1 150	1 370	1710	1 920	1 650	1 970	2 420	2 930	3 280
Bruchdehnung Agt	%	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0
Verhältnis ft / fy		> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15
Gewicht G ²	kg/m	2.90	3.40	4.20	4.55	5.80	6.30	7.45	9.10	10.70	13.45	15.05	13.00	15.50	19.00	23.00	25.80
Gewinderichtung		links	links	links	links	links	links	links	links	links	links	links	rechts	rechts	rechts	rechts	rechts
Maximale Prüflast (0.9 F_{yk}) F_p	kN	180	216	270	306	360	405	486	567	720	900	990	765	900	1 080	1 440	1 485

Gebrauchslasten / Anwendungen

bei Pfählen

Gebrauchslast Fyk/1.75 F	kN	114	134	170	194	229	257	309	360	457	571	629	486	571	685	914	943
bei Nägel im Vol	lverbund																
Gebrauchslast Fvk/1.35 F	kN	148	178	222	250	296	333	400	466	592	740	814	629	740	888	1 185	1 220

bei vorgespannten Anker VS

Festsetzkraft ≤ 0.6 × Ftk/P 0	kN	150	177	216	240	300	348	396	480	600	720	840	660	780	960	1 200	1 230
DUPLEX		a.A.	×	a.A.	×	×	a.A.	×	×	a.A.	a.A.	a.A.	a. A.	×	a.A.	a.A.	a.A.

KÜPS® Drill 2a

Aussendurchmesser mm	60	76	76	89	89	89	a.A.	a.A.
Innere Überdeckung mm	10.5	16.1	16.1	15.8	15.8	15.8	12.3	12.3

KÜPS® Bolt 2a

Aussendurchmesser m	m	60	60	60	60	76	76	89	89	89	a.A.	a.A.
Innere Überdeckung mi	m				10.5	16.1	16.1	15.8	15.8	15.8	12.3	12.3

Legende Typ

- Innendurchmesser

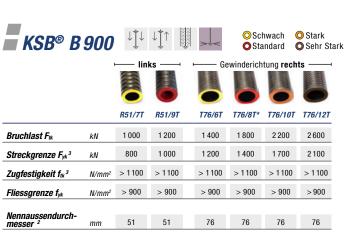
Nennaussendurchmesser in mm

Legende

KSB® Systemvarianten

mindestens 2 Wochen) - Entspricht der SIA 262 B 500 B

¹ Errechnet aus der Nennmasse


mit $S_0 = 10^3 x / 7.850 \text{ (kg/m}^3)$ ²Zulässige Abweichung: -3 bis +9 (%)

- Werte unterliegen laufenden Änderungen

³ Charakteristischer Wert (5 %-Fraktile)

* Lieferung auf Anfrage (a.A. / Lieferfrist

– Lieferlängen der Ankerstangen 2, 3 oder 4 Meter

Zugfestigkeit ftk ³	N/mm²	> 1100	> 1100	> 1100	> 1100	> 1100	> 1 100
Fliessgrenze fyk	N/mm²	> 900	> 900	> 900	> 900	> 900	> 900
Nennaussendurch- messer ²	mm	51	51	76	76	76	76
Wandstärke	mm	7.1	9.4	6.3	8	10	12.5
Nennquerschnitt 1 A	mm²	1 000	1 200	1 500	1 800	2 200	2900
Bruchdehnung Agt	%	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Verhältnis ft / fy		> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15
Gewicht G ²	kg/m	8.00	9.60	12.20	14.50	17.70	23.30
Gewinderichtung		links	links	rechts	rechts	rechts	rechts
Maximale Prüflast $(0.9 F_{yk})$ F_p	kN	720	900	1 080	1 260	1 530	1 890

Gebrauchslasten / Anwendungen

bei Pfählen

Gebrauchsiast Fyk/1.75 F	kN	457	571	685	800	971	1 200
bei Nägel im Voll	verbund						
Gebrauchslast Fyk/1.35 F	kN	592	740	888	1 037	1 259	1 555

bei vorgespannten Anker VS

Festsetzkraft ≤ 0.6 × Ftk/P 0	kN		nicht geeignet										
DUPLEX		a.A.	a.A.	a. A.	a. A.	a.A.	a.A.						

KÜPS® Drill 2a

Aussendurchmesser mm a.A.

KÜPS® Bolt 2a

Aussendurchmesser	mm	a.A.	a.A.		

	dewillucii	circuity intr	19
R32 INOX		R51 INOX	R38 INO X

		R32 INOX	— 2b —	R51 INOX	738 INOX 3 3b
Bruchlast Ftk	kN	360	630	950	630
Streckgrenze F _{yk} ³	kN	300	460	760	460
Zugfestigkeit ftk 3	N/mm²	800	800	800	800
Fliessgrenze fyk	N/mm²	650	650	650	650
Nennaussen- durchmesser ²	mm	32	38	51	38
Wandstärke	mm	5.6	9.5	9.5	9.5
Nennquerschnitt ¹ A	mm²	480	800	1 300	800
Bruchdehnung Agt	%	> 5.0	> 5.0	> 5.0	> 5.0
Verhältnis ft / fy		> 1.2	> 1.2	> 1.2	> 1.2
		0.0	0.0	10.5	0.0
Gewicht G ²	kg/m	3.8	6.3	10.5	6.3
Gewinderichtung		links	links	links	links
Maximale Prüflast (0.9 F _{yk}) F _p	kN	270	414	684	414

Gebrauchslasten / Anwendungen

bei Pfählen					
Gebrauchslast Fyk/1.75 F	kN	170	260	430	260
bei Nägel im Vol	liverbund				

KSB® Bohrkronenübersicht

optimaler Einsatz nach SIA 267

Bodenart			Lehmig, nboden	Sandig, I	Mischboden		t Blöcken bei er Hartmetall	
KSB® Bohrkronenty Bohrkronen Ankerred		0	6		>			
		Spee	edy Jet		eedy uzbohrkrone	Rocky Stiftbohrkrone		
R32/R38 R32/R51 R38/R51 R51/T64							ocky one Hartmetall	
Sonderkronen auf Anfrage, ä Typen und Grössen lieferbar								
ergrösserungsfaktor ohrkronendurchmesser x Faktor = ND) i rotativer Einbindung von <i>KÜMIX®</i> Dickspülung		1	1.3		1.5	2.0		
omineller Aussendurchmesser nd Radiale <i>KÜMIX®</i> (=ND)	Bohrkronen- grösse (D=mm)	ND	Überdeckung	ND	Überdeckung	ND	Überdeckung	
R32 links	51	66	17	77	22	102	35	
	76	99	33	114	41	152	60	
	90	117	43	135	52	180	74	
R38 inks	76	99	30	114	38	152	57	
	90	117	40	135	49	180	71	
	100	130	46	150	56	200	81	
	115	_		173	67	230	96	
	130	169	66	195	79	260	111	
	150	195	79					
			98					
	180*	234	90					
R51 © links	90	117	33	135	42	180	65	
R51 i inks		117			42	180 200	65 75	
	90		33	135 150 173				
	90	117	33	150	50	200	75	
	90 100 115	117 130	33 40	150 173	50 61	200 230	75 90	
	90 100 115 130	117 130 169	33 40 59	150 173	50 61	200 230	75 90	
	90 100 115 130 150	117 130 169 195	33 40 59 72	150 173 195	50 61	200 230	75 90	
(T64)	90 100 115 130 150 180*	117 130 169 195 234	33 40 59 72 92	150 173	50 61 72	200 230 260	75 90 105	
(T64)	90 100 115 130 150 180*	117 130 169 195 234	33 40 59 72 92	150 173 195	50 61 72	200 230 260	75 90 105	

* auf Anfrage ND nomineller Aussendurchmesser

Anderes Design oder mit Ankerreduktion möglich

KSB® Zubehör

Für jede Rückankerung die richtige Ankerplatte. Auf Wunsch fertigen wir für Sie die perfekte Lösung.

Alle Ankerplatten sind auch verzinkt lieferbar.

Ankerplatte gerade

 $0-2^{\circ}$ (Standardmutter)

mit KSB® Winkelscheibe $0-30^{\circ}$

Ankerplatte bombiert

0-15° (Kugelbundmutter)

Winkelplatte

0-35° (Kalottenplatte)

Netzfederplatte

Zur unterbrechungsfreien Verbindung der Ankerrohre. Alle Muffen sind auch verzinkt lieferbar.

Zur Fixierung der Ankerplatten an der Ankerstange. Alle Muttern sind auch verzinkt lieferbar.

KSB® Kugelbundmutter

KSB® Muffe

Standard

KSB® Mutter

Standard/Vorspannanker

KSB® Muffe

mit Nachinjektionsventil

KSB® Dichtung

< 250 bar

KSB® Mutter mit Öse

KSB® Anker

Einbau

- Einheitliche Verfahrenstechnik in allen Böden
- Die optimale Verzahnung mit dem anstehenden Boden
- Sehr hohe Einbauleistung
- Arbeitsausführung mit kleineren Bohrgeräten möglich
- Erschütterungsfreies Bohrverfahren
- Sehr flexibler und effizienter Bauablauf
- Verbessertes Trag- und Setzungsverhalten
- Bodenverbesserung durch Verpresskörper um ca. 20 %
- Einbau mit Anbaulafette $5-6\,\mathrm{m}$ ab Terrain möglich ohne grosse Gerüstung

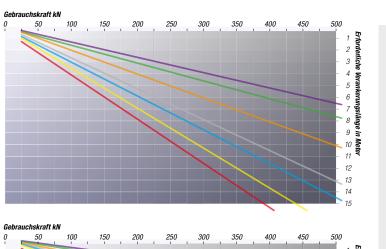
Bohren und Injizieren in einem Arbeitsgang. Dank funkgesteuerter **K MUNGG®** Pumpe kann ein Mann eingespart werden.

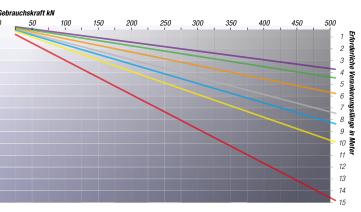
Während des drehenden und schlagenden Bohrvorgangs wird konstant Injektionsgut eingepresst. Es verdrängt und vermischt sich mit dem anstehenden Boden. Der *KÜMIX®* wird fortlaufend von der Bohrkrone zum Bohrlochmund gepresst. Damit wird die Bohrklein-Förderung bewerkstelligt und eine vollumfängliche Ummantelung gewährleistet. Beim Ausfegen des Bohrlochs vor dem Kuppeln jedes weiteren Ankerrohrs wird das Bohrloch um die Hublänge der Lafette ausgefegt (Pfeifenputz Bewegung), womit eine maximale Ausbildung des Verpresskörpers erreicht wird.

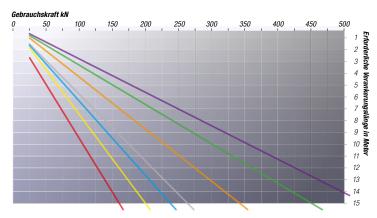
Vordimensionierung Verankerungslänge

«Mittlere» sandige Böden

mit Sicherheit = F1.85 Vergrösserungsfaktor = a 1.5 qsk = 150.0 kN/m2




mit Sicherheit = F 1.85 Vergrösserungsfaktor = a 2.0 gsk = 200.0 kN/m2



mit Sicherheit = F 1.85 Vergrösserungsfaktor = a 1.3 qsk = 80.0 kN/m2

Geologie

Injektionsverbrauch KÜMIX® kg/m (W/F-Wert 0.5)

Rohrkronendurchmesser d (mm)

acologic		Doni ki onendaremnesser a (mm)										
		51 mm	76 mm	90 mm	100 mm	130 mm	150 mm	180 mm	200 mm			
Bindige Böden	theoretisch	7	15	20	25	42	55	79	98			
a = 1.3	praktisch	9.1	20	25	35	55	75	105	130			
Sand	theoretisch	8	17	23	29	48	64	91	113			
a = 1.5	praktisch	12	25	35	45	75	100	140	170			
Kies	theoretisch	10	22	31	39	64	85	113	150			
a=2	praktisch	20	45	65	80	130	170	225	300			

Der Durchmesser des Verpresskörpers vergrössert sich durch das Verpressen mit Zementsuspension um einen Bodenabhängigen Anteil a. Der effektive Durchmesser berechnet sich also folgendermassen:

$\mathbf{D}_{\mathrm{eff}} = \mathbf{d} \times \mathbf{a}$

D_{eff} = effektiver Durchmesser vom Verpresskörper

- d = Durchmesser Bohrkrone
- a = Vergrösserungsfaktor

Bohrkopf-Durchmesser

51 mm • 76 mm • 90 mm •

100 mm

130 mm • 170 mm •

200 mm

KSB® Mini-Jet-Arbeiten

Mit der Mini-Jet-Technologie ist es möglich, Säulen von $30-60\,\mathrm{cm}$ Durchmesser zu erzeugen. Dies ist abhängig vom Zweck der Bohrung und von der Beschaffenheit des Untergrunds.

Beginn der Bohrung mit gleichzeitigem Injizieren von Mörtel unter Hochdruck mit Gertec. Der *KÜMIX®* wird durch Düsen an Bohrkrone 100 – 250 bar in den Untergrund gejettet.

Durch den kontinuierlichen Bohrfortschritt mit Hochdruckinjektion entsteht eine Säule aus zementiertem Material um den Mikropfahl.

Ist die Bohrtiefe erreicht, wird der **KSB®**, durch den injiziert wurde, im Bohrloch stehen gelassen. Dieser wirkt wie die Armierung eines Pfahls oder wie ein Anker.

Zubehör

Spülkopf 200 bar

Gertec IS-80-EA

Jetting-Bohrkrone

Düse

Muffe mit Dichtung patentiert

Dichtung 200 bar

Düsendurchmesser mm

	1.8	2.0	2.4	2.6	2.8	5.0								
	Düsend	urchfluss												
(l/min und Düse) KÜMIX® W/F-Wert 0.7														
5 bar	4	5	7	8	9	29								
10 bar	5	7	10	11	13	41								
20 bar	8	9	13	16	18	58								
30 bar	9	11	16	19	22	71								
40 bar	11	13	19	22	26	83								
50 bar	12	15	21	25	29	92								
60 bar	13	16	23	27	32	101								
70 bar	14	17	25	30	34	109								
80 bar	15	19	27	32	37	117								
90 bar	16	20	29	33	39	124								
100 bar	17	21	30	35	41	130								
120 bar	19	23	33	39	45	143								
150 bar	21	26	37	43	50	160								
180 bar	23	28	40	47	55	175								
200 bar	24	30	43	50	58	185								
220 bar	25	31	45	52	61	194								

Der Durchfluss ist sowohl vom Düsendurchmesser und Druck, als auch vom Injektionsgut abhängig. In der Tabelle ist der Durchfluss für gängige Düsendurchmesser und Drücke aufgeführt. Das Injektionsgut weist einen W/F-Wert von 0.7 und eine Dichte von 1.66 kg/ ℓ auf.

KSB® Spülköpfe

Mithilfe des *KSB®* Spülkopfs kann während des Bohrvorgangs Zementmörtel durch den Hohlraum eines rotierenden Ankers gepumpt werden. Auf diese unkomplizierte Weise wird gewährleistet, dass während des Bohrfortschritts eine gleichzeitige Injektion des Hohlankers erfolgt. Der injektionsadapter besteht aus drei Komponenten – der Spülkopfwelle, dem Spülkopf und dem Dichtungssatz.

Aussengewinde

Innengewinde

Vorgehen

Für die Verbindung zwischen dem Adapterstück und dem *KSB®* Anker muss der richtige Spülkopfwelle innerhalb der Injektions-adaptereinheit gewählt werden. Dadurch wird sichergestellt, dass die Verbindung stark genug ist, um der hohen Beanspruchung durch das Drehschlagbohren zu widerstehen. Zudem können die Muffenverbindungen beim Antreffen von Hindernissen während des Abbohrens kurzzeitige exzentrisch wirkende Lasten ausgleichen.

Der Spülkopfwelle muss auf dem Adapter fest montiert und arretiert werden, um sicherzustellen, dass der Anschluss während des Bohrvorgangs festsitzt und sich nicht während des Auswechselns der einzelnen Bohrstangen löst.

Die Dichtungen innerhalb der Mörtelmanschette sollten ca. alle 20 Minuten gefettet werden.

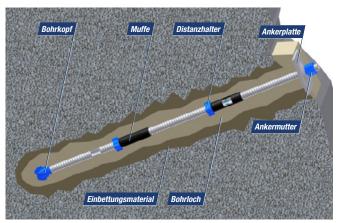
Verwendung bis maximal $50\ bar$.

IG/IG Übergangsmuffe

IG/AG Übergangsadapter

Schlüssel

KSB® Anwendungsgebiete


KSB® Bodenägel B500, B900

Die *KSB®* Vorspannanker B 500 werden im Bereich der freien Ankerlänge mit einem *KSB®* PE-Hüllrohr ausgebildet. Dies schützt den Anker in der freien Ankerlänge (Vorspannlänge) vor Verklebung mit dem Injektionsgut und Boden. Der Anker erhält dadurch eine Freispielstrecke (freie

Trassesicherung, Netzbefestigung, Strassensicherung, Rückverankerte Pfahlwände, Baugrubensicherung, Tunnelbau, Voreinschnitt, Strassensicherung, Steinschlagverbau Spundwand, Kombination mit Nägel

Ankerlänge), die nach Abbinden des Injektionsguts vorgespannt werden kann. Nach Belieben kann auch eine Küchler Kraftmessdose eingebaut werden, sodass die Kraft immer kontrolliert werden kann.

Vorgespannt (VS)

Die *KSB*® Vorspannanker B 500 werden im Bereich der freien Ankerlänge mit einem *KSB*® PE-Hüllrohr ausgebildet. Dies schützt den Anker in der freien Ankerlänge (Vorspannlänge) vor Verklebung mit dem Injektionsgut und Boden. Der Anker erhält dadurch eine Freispielstrecke (freie

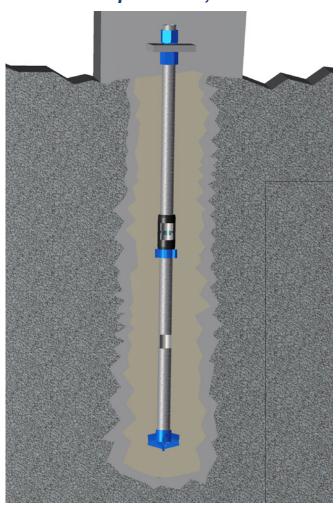
Baugrubensicherung, Trägerwand, Rühlwand / Spundwand, Trägerwand, Pfahl / Spundwand, Kombination mit Nägel

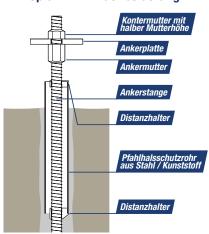
Ankerlänge), die nach Abbinden des Injektionsguts vorgespannt werden kann. Nach Belieben kann auch eine Küchler Kraftmessdose eingebaut werden, sodass die Kraft immer kontrolliert werden kann.

KSB® Ausgleichscheibe mit Kugelbundmutter | Toleranz 0 – 30°

Einbau einer Küchler Kraftmessdose.

Schutzhaube für **KÜPS®** Dauer Überwachung.


KSB® Mikropfahl B500, B900



Pfahlgründung Fundamentverstärkung, Brückenbau I Lärmschutzwände, Trasse- und Strassensicherung

KSB® Mikroverpresspfähle können in schlecht zugänglichen Bereichen und in unmittelbarer Nähe von Gebäuden eingebaut werden. Falls das Gründungsniveau tiefer als erwartet angetroffen wird, kann der Mikropfahl durch sein durchgängiges Gewinde jederzeit verlängert werden. Die Knicksteifigkeit der Pfähle kann durch Anbringen eines Stahlrohrs im oberen Pfahlbereich und Verpressen des Ringraums erhöht werden. Mögliche Anwendungsbereiche für KSB® Mikroverpresspfähle gemäss der EN 14199: Fundamente von vorgehängten Fassaden, Fundamentverstärkungen, Pylonfundamente, Windenergieanlagen, Sanierung von alten Bauwerken und Ständerfundamente für elektrische Bahnanlagen. Der Knicksicherheitsnachweis für die schlanken KSB® Mikroverpresspfähle ist nur zu führen, wenn die Scherfestigkeit des undrainierten Bodens kleiner als 10 kN/m2 ist. Bei sehr instabilen Böden wird der Einsatz ab KSB® R51 empfohlen.

Bei Wechselbelastung ist ein doppelter Korrosionsschutz nötig. (Duplex, $\pmb{K\ddot{U}PS}$ $^{@}$)

Mikropfahl mit Druckbelastung

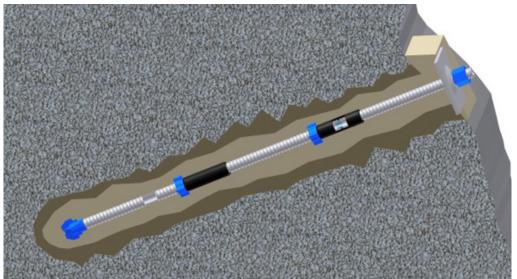
Zugbelastung

KSB® Pfahlhalsschutzrohr

20 mm Radiale Überdeckung mit Injektionsgut

Zug- und Druckbelastung

KSB® Permanent


KSB® Systemvarianten

KSB® Duplex-System

B 500 KSB® Duplex – permanentes system

KSB® Duplex-System

Mit dem **KSB®**-Duplex System wird während des Bohrens bereits mit **KÜMIX®** Dickspülung verpresst. Dadurch wird je nach Geologie der Boden mittels Injektionshochdruck von bis zu 200 bar und einem tiefen W/Z verpresst. Der Injektionsdruck wird durch zwei eingebaute Düsen in der verlorenen **KSB®** Bohrkrone eingebaut. Die Düsen wirken wie bei einem Hochdruckreiniger, der Boden wird komplett aufgeschnitten, verdichtet, verzahnt und eine sichere Zementsteinummantelung mit hochwertigem **KÜMIX®** hergestellt. Die Reibung im Boden wird dadurch um ein Vielfaches verbessert.

Der *KSB*[®] Bohrkronendurchmesser beträgt je nach Bedarf zwischen 51 mm und 200 mm, und ist auch in Hartmetall und in verschiedenen Designs lieferbar.

Das patentierte *KSB*[®] Kupplungsystem erlaubt beliebiges Verlängern des Systems und sichert die Dichtigkeit auch unter Hochdruck. Dies er-

möglicht auch effizientes Arbeiten bei kleinen Arbeitslängen. Der Einbau des ganzen Systems erfolgt in einem und benötigt keine zusätzlichen Hebegeräte.

Distanzhalter

Anwendungsgebiete

Strassensicherung

Lärmschutzwände SBB

Baugrubensicherung

Die 5 Korrosionsschutzstufen

Bei dieser Technik wird die Abrost-Rate des Stahldurchmessers über die gesamte Lebensdauer bestimmt. Damit wird die verbleibende Tragkraft des Ankers sowie seine Fähigkeit, die Lastanforderungen des Bodennagels zu erfüllen, ermittelt.

2 – Schutz durch Feuerverzinkung

Durchgehende Schweizer Verzinkung nach Norm EN 1461

3 – Schutz durch Epoxy-Beschichtung

- wasserundurchlässig
- elektrische Isolation

Toplex - Plus Pulverbeschichtung 60 - 80 my erreicht die Korrosivitätskategorie C5-I lang. Das heisst, die Beschichtung trotzt aggressiver Industrieatmosphäre mit hoher Feuchtigkeit.

Diese Vorteile bieten Ihnen die Toplex Systeme

- umweltschonend, «erfüllen die EU RoHS Richtlinien»
- verhindern den Zinkabbau und dadurch die Belastung vom Erdreich und Wasser

- 100 % lösungsmittelfrei
- mechanisch hoch belastbar (schlag- und druckfest)
- geschützt gegen Unterwanderung
- sehr gute Alterungs- und Überarbeitungseigenschaften (Sanierung)

Elektrische Widerstandsmessungen

 $40 - 50 \, \text{my} = 5500 \, \text{V}$

 $60 - 65 \, \text{my} = 6500 \, \text{V}$

80 my = 7000 V

Erfolgreich eingesetzt bei vielen beschichteten Geländern, Lärmschutzwänden, Brücken und Autobahnen.

Auch mit K Stützbohrsystem möglich, mit zusätzlichem Stahlrohr.

5 – Schutz durch KÜMIX®

- schwundkompensiert
- wasserundurchlässig
- ohne Chemiezusätze

Systemvorteile durch KÜMIX® (Injektionsmörtel)

Das Injektionsgut (KÜMIX®) ist wasserundurchlässig und wurde 72 h bei 500 kpa geprüft (max. Eindringtiefe 0.8 cm) = hoher Korrosionsschutz bei geringer Ummantelung.

Der **KÜMIX**® Iniektionsmörtel ist schwindkompensiert und weist ein thixotropes Verhalten auf. Geringerer Mörtelverbrauch als wenn nur Zement eingesetzt würde. Der W/B (Wasser-Bindemittelwert) kann problemlos unter 0.5 gehalten werden, wodurch eine hohe Druckfestigkeit und ein geringes Schwinden gewährleistet sind.

Vorteile durch Einbringen des Injektionsguts KÜMIX® mittels KSB® Selbstbohranker

- Schonendes Einbohren bei verzinkt und epoxybeschichteten Ankern durch dauerndes Schmieren des Bohrlochs
- Keine Wasserspülbohrung, dadurch ist nur eine sehr geringe Beschädigung der Beschichtung möglich
- Verfüllung vom Bohrlochtiefsten aus (von Bohrkrone)
- Vibrierendes Verpressen durch drehschlagendes Bohren (sehr gute Verdichtung des Injektionsguts)
- Durch rotierende Injektion erfolgt gutes Durchmischen des Bodens (Bohrlocherweiterung 2- bis 3-fach des Bohrdurchmessers)
- Sehr gute Verzahnung des Injektionsguts 1.5- bis 2-fach, höhere Mantelreibung als verrohrt gebohrte Systeme (höhere Sicherheit des Ra)

KSB® INOX

2b und 3b – permanente Selbstbohrlösung

Der *KSB®*INOX ist ein selbstbohrendes Ankersystem mit durchgehendem Aussengewinde, das ohne Verrohrung in lockere Böden und Fels bei gleichzeitigem Verpressen eingebohrt werden kann. Der Anker verfügt zudem über ein linksgängiges Gewinde für herkömmliches Drehschlagbohren.

Dem *KSB*®INOX System liegen die üblichen Bohrstangengewinde R32, R38 und R51 zugrunde. Eine Vielzahl untereinander kompatibler Systemkomponenten garantieren unterschiedlichste Anwendungsgebiete. Die Gewinde der *KSB*®INOX Stangen werden auf die gesamte Stangenlänge kalt aufgerollt. Durch diese gewaltige Kaltverformung wird nicht nur der Stahl vergütet, die Streckgrenze erhöht, sondern praktisch auch jede einzelne Stange einer mechanischen Materialprüfung unterzogen.

Der KSB $^{\circ}$ INOX kann nach SIA Norm 267 als Permanenter Anker 2b eingesetzt werden.

Vorteile

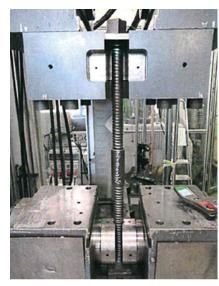
- Kein unverrohrtes Bohren
- Schnelle Bauzeit
- Keine Widerstandsmessung
- Kleinerer Bohrdurchmesser
- Korrosionsschutz auch bei Kupplungen
- Solide

		R32 INOX	R38 INOX — 2b —		R38 INOX 3 b
Bruchlast Ftk	kN	360	630	950	630
Streckgrenze F _{yk} ³	kN	300	460	760	460
Zugfestigkeit ftk 3	N/mm²	800	800	800	800
Fliessgrenze fyk	N/mm²	650	650	650	650
Nennaussen- durchmesser ²	mm	32	38	51	38
Wandstärke	mm	5.6	9.5	9.5	9.5
Nennquerschnitt 1 A	mm²	480	800	1 300	800
Bruchdehnung Agt	%	> 5.0	> 5.0	> 5.0	> 5.0
Verhältnis ft / fy		> 1.2	> 1.2	> 1.2	> 1.2
Gewicht G ²	kg/m	3.8	6.3	10.5	6.3
Gewinderichtung		links	links	links	links
Maximale Prüflast	ĿΝ	270	414	684	414

Gebrauchslasten / Anwendungen

bei Pfählen

Cohrougholast					
Gebrauchslast Fyk/1.75 F	kN	170	260	430	260


bei Nägel im Vollverbund

ber wager ini von	verbunu				
Gebrauchslast Fvk/1.35 F	kN	222	340	562	340

Rundgewinde

ISO 10208 links

- ¹ Errechnet aus der Nennmasse mit $S_0 = 10^3 x m / 7.850 (kg/m^3)$
- ²Zulässige Abweichung: -3 bis +9 (%)
- ³ Charakteristischer Wert (5 %-Fraktile)
- * Lieferung auf Anfrage (a.A. / Lieferfrist mindestens 2 Wochen)

Akkreditierte Systemprüfung

Hohe Bruchdehnung

Stahlqualität

Korrosions- schutzstufe	E .	Werkstoff Nr.	Wider- standsklasse	Zusamm	ensetzun	9				
				С	Mn	Р	S	Si	Cr	Ni
2b	304	1.4301	2	< 0.07	< 2.00	< 0.045	< 0.015	< 1.00	17.5 – 19.5	8.0 – 10.5
3b	304	1.4462	3	< 0.03	< 2.00	< 0.035	< 0.015	< 1.00	21.0 – 23.0	4.5-6.5

KÜPS® Permanent System

KÜPS® Drill

KÜPS® Bolt

Das *KÜPS*® (Küchler Permanent System) besteht aus einem *KSB*® (wahlweise R32 / R38 / R51 / T64) Zugglied und einem Hüllripprohr (wahlweise 60/76/90), das die unbeschädigte Einbettung des Zugglieds durch *KÜMIX*® (Injektionsgut) sicherstellt.

Der Bohrvorgang selbst läuft nach dem gleichen Verfahren ab wie bei herkömmlichen *KSB®* Selbstbohrankern.

Ihre Vorteile

- Kostengünstige Alternative zu anderen vorinjizierten Ankern
- Unbeschädigte Injektionsummantelung
- Schnellerer und effizienterer Einbau
- Stablänge nicht durch Transport beschränkt
- Keine Widerstandsmessung erforderlich

Einfaches Versetzen

Während des Bohrvorgangs tritt das Einbettungsmaterial aus Injektionsventilen an der Bohrkrone aus und verfüllt den Ringraum zwischen Boden und Hüllripprohr. Ist die Ziellänge der Bohrung erreicht, wird der Ringraum zwischen Hüllripprohr und Zugglied ebenfalls verfüllt. Dies geschieht durch ein Nachinjektionsventil das sich am Ende des Zugglieds, innerhalb des Hüllripprohres befindet. Dazu wird die Öffnung des Zuggliedes zur Bohrkrone hin mittels einer Kugel verschlossen, sodass das Injektionsgut aus den Nachinjektionsventilen und nicht mehr aus der Bohrkrone austritt. Die Verbindung der einzelnen Segmente des Zuggliedes wird durch KSB® Muffen erzielt. Die Segmente des Hüllripprohres werden durch spezielle KÜPS® Kupplungen verbunden, die ausserdem das Zugglied innerhalb des Hüllripprohres zentrieren und abdichten.

Aus technischen Gründen sind die beiden Verbindungstypen versetzt angeordnet. Es können die gleichen Bohrgeräte wie beim Einbau von herkömmlichen **KSB®** Selbstbohrankern verwendet werden.

Dank der leichten Bohrtechnik wird nur einfaches Equipment benötigt. Weiter ist auch verrohrtes Bohren nicht notwendig.

Muffe mit doppeltem Korrosionsschutz nach SIA Norm. Entwickelt und geprüft mit der FH Bern, Burgdorf und mit einem KTI Projekt erfolgreich abgeschlossen.

Korrosionsschutz nach SIA 267 2a/3a*

Bei der Verwendung von permanenten, ungespannten *KSB*® Selbstbohrankern, werden je nach Bauwerkklasse und Nutzungsdauer, vier verschiedene Korrosionsschutzstufen gefordert. Die Korrosionsschutzstufen 1 bis 3 erfordern spezifische konstruktive Massnahmen. Sie dienen dem Schutz gegen anodische Korrosion.

Mit dem **KÜPS®** kann die Korrosionsschutzstufe 2a erreicht werden. Nach SIA 267 wird eine Mindesteinbettung des Zugglieds im Injektionsgut von 5 mm bei werkseitiger Herstellung der Anker gefordert. Diese wird durch das **KÜPS®** mit **KÜMIX®** auch bei Herstellung auf der Baustelle erreicht.

^{*} elektrische Isolation nicht möglich

KÜPS® Technische Daten

KSB® Innenstange

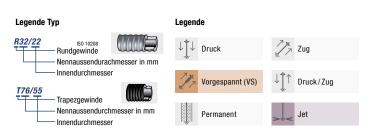
KÜPS® Hüllripprohr

			— Gewir	nderichtun	g rechts -					← Gewind	lerichtung	rechts —
		R32/15	R38/17	R38/15	R51/35	R51/28	R51/25	T64/42	T64/36	60	76	89*
Bruchlast Ftk	kN	400	500	580	660	800	1 000	1 200	1 400			
Streckgrenze F _{yk} ³	kN	340	400	450	540	630	800	1 000	1100			
Zugfestigkeit ftk 3	N/mm²	700	700	700	700	700	760	730	740			
Fliessgrenze f _{yk}	N/mm²	600	600	600	600	600	600	600	580			
Nennaussendurch- messer ²	mm	32	38	38	51	51	51	64	64	60.3	76.1	88.9
Wandstärke	mm	9	8.5	9.5	8	9.5	12.5	11	13			
Nennquerschnitt ¹ A	mm²	580	740	800	950	1 150	1 370	1710	1 920			
Bruchdehnung Agt	%	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0	> 5.0			
Verhältnis ft / fy		> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15	> 1.15			
Gewicht G ²	kg/m	4.55	5.80	6.30	7.45	9.10	10.70	13.45	15.05	1.95	3.65	4.29
Gewinderichtung		links	links	links	links	links	links	links	links	rechts	rechts	rechts
Maximale Prüflast (0.9 F _{/k}) F _p	kN	306	360	405	486	567	720	900	990			

Gebrauchslasten / Anwendungen

bei Pfählen

Gebrauchslast Fyk/1.75 F	kN	194	229	257	309	360	457	571	629
bei Nägel im Vol	lverbund								
Gebrauchslast Fyk/1.35 F	kN	250	296	333	400	466	592	740	814

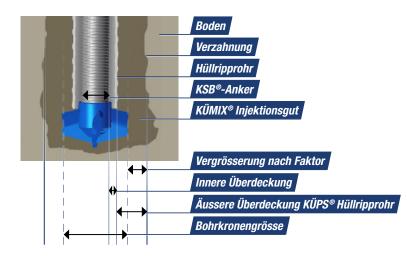

KÜPS® Drill 2a

Aussendurchmesser	mm	60	76	76	89	89	89	a.A.	a.A.
Innere Überdeckung	mm	10.5	16.1	16.1	15.8	15.8	15.8	12.3	12.3

KÜPS® Bolt 2a

Aussendurchmesser mm	60	76	76	89	89	89	a.A.	a.A.
Innere Überdeckung mm	10.5	16.1	16.1	15.8	15.8	15.8	12.3	12.3

- Bessere statische Werte als ein Stabpfahl
- Durchgehendes originales Bohrstangengewinde
- Vergütung durch kaltes Aufrollen des Gewindes
- Grosser Injektionskanal



- Das Auflager (Kopfplatte) muss rechtwinklig 90° zur Traggliedachse ausgebildet werden.
- Werte unterliegen laufenden Änderungen
- Lieferlängen der Ankerstangen 2, 3 oder 4 Meter
- 1 Errechnet aus der Nennmasse mit S $_{0} = 10^{3}$ x m / 7.850 (kg/m 3)
- ² Zulässige Abweichung: -3 bis +9 (%)
- ³ Charakteristischer Wert (5 %-Fraktile)
- * Lieferung auf Anfrage (a.A. / Lieferfrist mindestens 2 Wochen)

KÜPS® Permanent nach SIA 267

Überdeckung von mind. 20 mm (mit 2a) / 40 mm (mit 3a*)

Berechnung zur Einhaltung der mindestens 20 mm für 2a, respektive 40 mm für 3a* *KÜMIX*® (Zement) Überdeckung gemäss SIA 267 auf Druck und Berechnung des nominellen Pfahldurchmesser. Achtung! Die Gewährleistung des Korrosionsschutzes am Pfahlkopf ist nur mit einem Pfahlhalsschutzrohr gegeben (siehe Pfahlhalsschutzrohr Dokumentation).

odenart			indig, Lehm Mischbode	-	San	dig, Mischl	ooden	Kiesig mit Blöcken bei > 3 Meter Hartmetall				
SB® Bohrkronentyp				ı			•	Rocky				
			Speedy Jet	t	Stu	Speedy fenkreuzbohrl	krone	Stiftt	Rocky Stiftbohrkrone Hartmetall			
ergrösserungsfakto		1.3			1.5		2.0					
	Radiale KÜMIX® Überdeckung (=ND) Bohrkronen-											
mineller Aussendurchmesser I Radiale KÜMIX® Überdeckung (=ND) Bohrkronen- grösse (D=mm)	ND	Innere Überdeckung	Äussere Überdeckung	ND	Innere Überdeckung	Äussere Überdeckung	ND	Innere Überdeckung	Äussere Überdeckung		
Radiale KÜMIX® Überdeckung (=ND		ND			ND 114			ND 152				
Radiale KÜMIX® Überdeckung (=ND R32 ⊕links Hüllripprohr = 60 mm	grösse (D=mm)	ND 117	Überdeckung		_	Überdeckung	Überdeckung		Überdeckung	Überdeckung		
Radiale KÜMIX® Überdeckung (=ND	grösse (D=mm) 76		Überdeckung	Überdeckung	114	Überdeckung	Überdeckung 27	152	Überdeckung	Überdeckung 46		
R32 Dinks Hüllripprohr = 60 mm Innere Überdeckung = 10.5 mm R38 Dinks	76 90	117	10.5 10.5	Überdeckung 29	114 135	Überdeckung 10.5 10.5	Überdeckung 27 38	152	Überdeckung 10.5 10.5	Überdeckung 46		
R32 ⊗links Hüllripprohr = 60 mm Innere Überdeckung = 10.5 mm	76 90 100	117	10.5 10.5 16.1	29 35	114 135 150	10.5 10.5 10.1	27 38 45	152 180	10.5 10.5 10.5	Überdeckung 46 60		
R32	grösse (D=mm) 76 90 100	117 130 130	10.5 10.5 16.1	29 35 27	114 135 150	10.5 10.5 16.1	27 38 45	152 180	10.5 10.5 16.1 16.1	Überdeckung 46 60		
R32 inks Hüllripprohr = 60 mm Innere Überdeckung = 10.5 mm R38 inks Hüllripprohr = 76 mm Innere Überdeckung = 16.1 mm R51 inks	grösse (D=mm) 76 90 100 115	117 130 130 150	10.5 10.5 16.1 16.1 16.1	29 35 27 37	114 135 150	10.5 10.5 16.1 16.1 16.1	27 38 45	152 180	10.5 10.5 16.1 16.1 16.1	Überdeckung 46 60		
R32 ● links Hüllripprohr = 60 mm Innere Überdeckung = 10.5 mm R38 ● links Hüllripprohr = 76 mm Innere Überdeckung = 16.1 mm	grösse (D=mm) 76 90 100 115 130	117 130 130 150 169	10.5 10.5 16.1 16.1 16.1 15.8	29 35 27 37 47	114 135 150 150 173	10.5 10.5 10.5 16.1 16.1 16.1 15.8	27 38 45 37	152 180	10.5 10.5 16.1 16.1 16.1 15.8	46 60 62		

Berechnungsbeispiel

Bei sandig bindigem Boden und rotativer Einbindung von *KÜMIX* Dickspülung

Vergrösserungsfaktor: 1.5

KSB® Stange: R38 = D 38 mm

KÜPS® Hüllripprohr: D 76 mm

KSB® Bohrkronengrösse: D 115 mm

Nomineller Aussendurchmesser

Vergrösserungsfaktor \times *KSB* $^{\odot}$ Bohrkronengrösse (115 mm \times 1.5 = 173 mm)

KÜMIX® Überdeckung KÜPS®

Nomineller Aussendurchmesser – $\textit{K\"{UPS}}^{\text{@}}$ Hüllripprohr \div 2

 $((173 \, \text{mm} - 76 \, \text{mm}) \div 2 = 48 \, \text{mm}))$

^{*} elektrische Isolation nicht möglich

KÜPS® Zubehör

Überdeckung von mind. 20 mm (mit 2a) / 40 mm (mit 3a)

KÜPS® Bohrkronenadapter

- R32/60, R38/76, R51/90
- Patentierter Bohrkronenadapter mit Innen- und Aussengewinde
- Inkl. Nachinjektionsventil

KÜPS® Spitze «Bolt»

- 60, 76, 90
- Für den Gebrauch von Felsbohrungen oder verrohrten Bohrungen

KSB® Muffe

- R 32, R 38, R 51
- Mit Innengewinde und Mittelstopp

KÜPS® Stahlkupplung

mit Zentrierung

- 60 / 76 / 90
- Mit Aussengewinde, Dichtung, Mittelstopp und Distanzhalter

KSB® Mutter

- R 32, R 38, R 51
- Standard

KSB® Kontermutter

- R 32, R 38, R 51
- Für das Kontern des Pfahlkopfes

KSB® Kugelbundmutter

- R 32, R 38, R 51
- Mit Kugelsitz

Kuchjer

KSB® Mutter mit Öse

- R 32, R 38
- Für das Anbinden von Abspannseilen

KSB® Ankerplatte flach

- R 32, R 38, R 51
- 150/150, 200/200, 250/250, 300/300 mm
- Dicke 20, 25, 30 mm
- Andere Grössen auf Anfrage

KSB® Ankerplatte bombiert

- R 32, R 38
- 150/150, 200/200 mm
- Dicke 8, 10, 12 mm
- Bombierter Sitz

Bohren, Versetzen, Verpressen, Prüfen

Verpresstechnik

1. KÜPS® ankoppeln am Bohrhammer.

 KÜMIX® mittels Spülkopf durch das KÜPS® aus der Bohrkrone pumpen. Bohren während laufender KÜMIX®-Spülung.

 Verlängern des KÜPS®
 Beliebiges Verlängern und somit optimale Anpassung an die Geologien. Abkoppeln am Bohrhammer.

 Verlängerung an dem gebohrten KÜPS®-Ende montieren. Anschliessend am Bohrhammer einschrauben, Injektion starten und weiterbohren bis die Bohrtiefe wieder erreicht ist.

5. Erreichen der Verankerungslänge. Abkoppeln am Bohrhammer, Dämpfungsschlagadapter entfernen, Abpressadapter montieren, Kugel in die KSB® Ankerstange einführen und mittels KÜMIX® den inneren Ringraum über das Injektionsventil bei der Bohrkrone injizieren. Beim Austritt des Abpressadapters wird der Ausgang mittels Kugelhahnen geschlossen und der innere Ringraum, mit 2 Bar,

6. Überwachung des inneren Injektionsdrucks.

7. Komplett verpresstes und eingebettetes **KÜPS®**-System.

8. Mechanische Zugprüfung

auf Dichtigkeit überprüft.

Feldversuch

mit Fachhochschule Bern, Burgdorf

Die Funktionstüchtigkeit des *KÜPS®* wurde mittels Feldversuchen in Zusammenarbeit mit der Fachhochschule Bern, Burgdorf in einem KTI Bericht nachgewiesen.

Dazu wurden sechs Prüfanker in einem Testfeld eingebaut. Anhand von drei Ausziehversuchen konnte eine Tragkraft von mindestens Tm = 64 kN/m nachgewiesen werden. An den drei weiteren Ankern wurden Querschnitte zur Messung der Mindestzementüberdeckung im Bereich der Muffen der Zugglieder erstellt.

Es konnte nachgewiesen werden, dass die nach SIA 267 für werkseitig hergestellte Anker geforderte Mindesteinbettung von 5 mm trotz Herstellung auf der Baustelle nicht unterschritten wird.

230mm nomineller Durchmesser mit 100 mm Bohrkronengrösse

Drei geprüfte *KÜPS*-Anker. 6 Schnitte bei jeder Muffe.

Erreichte innere und äussere Überdeckung.

Herausgezogenes komplett mit *KÜMIX* ummanteltes *KÜPS®*-System

Geprüft mit einem KTI Projekt in Zusammenarbeit mit der FH Bern, Burgdorf.

KÜPS® Dauerüberwachung

Einbau einer Küchler Kraftmessdose.

Der Anker wird mit Spannung auf seine Widerstandsfähigkeit geprüft. Die Digital-Kraftmessdose dient zur periodischen Ablesung der wirkenden Kräfte.

Schutzhaube für KÜPS® Dauer Überwachung.

Mit der eingebauten Küchler Kraftmessdose ist es möglich das *KÜPS*® dauerhaft mittels Abspannkraft zu überwachen. Auf Wunsch ist eine Online Dauer Überwachung mit Alarmsystem möglich.Die Stahlschutzhaube schützt den *KÜPS*® Ankerkopf so wie das Messsystem.

Mikropfähle permanent

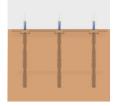

SIA 267 2a/3a*

KÜPS® Mikroverpresspfähle können in schlecht zugänglichen Bereichen und in unmittelbarer Nähe von Gebäuden eingebaut werden. Falls das Gründungsniveau tiefer als erwartet angetroffen wird, kann der Mikropfahl durch sein durchgängiges Gewinde jederzeit verlängert werden. Bei Drehschlagbohrungen entstehen im Vergleich zu Rammpfahlsystemen nur minimale Erschütterungen und Beeinträchtigungen. So können die Fundamente alter Bausubstanz ohne Beschädigungen ertüchtigt werden. Die Knicksteifigkeit der Pfähle wird durch Anbringen des KÜPS®-Hüllripprohrs im gesamten Pfahlbereich erhöht.

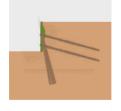

Mögliche Anwendungsbereiche für **KÜPS®** Mikroverpresspfähle: Fundamente von vorgehängten Fassaden, Fundamentverstärkungen, Pylonfundamente, Windenergieanlagen, Sanierungen von alten Bauwerken und Ständerfundamente für elektrische Bahnanlagen.

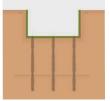
Der Knicksicherheitsnachweis für die schlanken *KÜPS®* Mikroverpresspfähle ist nur zu führen, wenn die Scherfestigkeit des undrainierten Bodens kleiner als 10 kN/m2 ist. Bei sehr instabilen Böden wird der Einsatz ab *KSB®* R51 empfohlen.

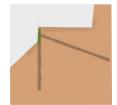
Bei Wechselbelastung ist ein doppelter Korrosionsschutz nötig. (Duplex, **KÜPS®**)



Mikropfähle 38/76 in Teufen, etwa 350 Laufmeter


Anwendungsgebiete


Unabhängige Einzelpfähle


Pfahlgruppe

Unterfangung spfahl

Auftriebspfahl

Bankettstabilisierung

Mast-Fundamentverankerung

^{*} elektrische Isolation nicht möglich

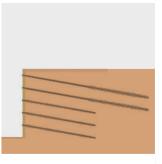
Bodennägel permanent

SIA 267 2a/3a*

KÜPS® Küchler Permanent System-Bodennägel sind ideal für lose oder instabile Böden, da sie ohne Verrohrung eingebracht werden können. Das System wird daher gerne bei nicht standfesten Böden verwendet. Das KÜPS® ermöglicht Bohren und Injizieren in einem Arbeitsgang. Der vollständige Verbund auf ganzer Länge ermöglicht die Verdübelung des oberflächlichen, losen Erdkeils mit einer tiefer gelegenen Bodenschicht. Bodennägel werden normalerweise als risikoarme Einbauten angesehen.

Bodenvernagelungen sollten in einem rombenförmigen Raster geplant werden, um eine effiziente Verteilung der Bewehrung sicherzustellen. Innerhalb der vernagelten Front sollte man ein entsprechendes Drainage System sicherstellen, damit sich innerhalb des Hangs kein Wasser sammeln kann. Dieses würde später eine unkontrollierte Belastung auf die Vorsatzschale ausüben.

Nagelwand 32/60 in Gettnau (BLS), etwa 1000 Laufmeter



Nagelwand 32/60 in Lausen, etwa 1000 Laufmeter

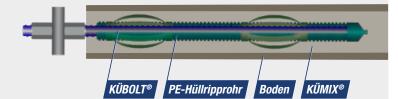
Probebohrungen in Zweisimmen, Berner Oberland

Anwendungsgebiete

Baugrubensicherung

Rückverankerung Spundwand

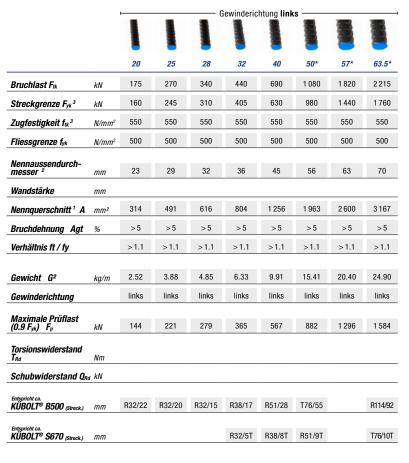
^{*} elektrische Isolation nicht möglich


KÜBOLT® Stabanker

Stabanker

Der *KÜBOLT®* ist ein Vollstabanker mit durchgehendem Aussengewinde. *KÜBOLT®* Pfähle können Lasten von 100 – 1500 kN aufnehmen. Die Pfähle bestehen aus Stabelementen von maximal 12 m, die mit Muffen gekoppelt werden. Die *KÜBOLT®* Elemente sind gerippte Gewindestäbe, die jeweils in das vorgebohrte Bohrloch eingelegt werden. Der Federkorbdistanzhalter stellt sicher, dass der *KÜBOLT®* Anker zentral im Bohrloch verankert ist.

System im Einsatz


Ihre Vorteile

- Einfaches Spannen, Nachspannen und Nachlassen durch Schraubverankerung
- Ausgezeichneter Verbund zwischen Ankerstab und Mörtel durch Gewinderippen
- Gute Anpassung an die erforderlichen Lasten durch eine grosse Bandbreite von Querschnitten und Stahlgütern
- Einfache Längenanpassung vor Ort, z.B. bei variierenden geologischen Bedingungen
- Praktisch in allen Böden einsetzbar

KÜBOLT® Technische Daten

Gebrauchslasten / Anwendungen

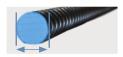
bei Pfählen

Gebrauchslast Fyk/1.75 F	kN	91	140	177	231	360	560	820	1 006
bei Nägel im Vol	lverbund								
Gebrauchslast Fyk/1.35 F	kN	118	181	229	300	466	725	844	1 303
bei vorgespannt	en Anker	VS							

Festsetzkraft

≤ 0.6 × Ftk/P 0	kN	105	162	204	264	414	648	1 090	1 329
DUPLEX		a.A.	a.A.						

Vorinjizierter KÜBOLT® 2a/3a (ohne Kupplung)


			-					
· · · · · · · · · · · · · · · · · · ·								
Aussendurchmesser mm	65	65	65	65	85	100	100	100

- 1 Errechnet aus der Nennmasse mit S0 = 106 x m / 7.850 (kg/m3)
- ²Zulässige Abweichung: -3 bis +9 (%)
- ³ Charakteristischer Wert (5 %-Fraktile)
- * Lieferung auf Anfrage
- Werte unterliegen laufenden Änderungen
- Lieferlängen der Ankerstangen 12 Meter, weitere Längen mit zusätzlicher Schnittzuschlag auf Anfrage

Legende

Trapezgewinde

links

max. Nennaussendurchmesser

KÜBOLT® Zubehör

KÜBOLT ® Muffe mit Mittelstop

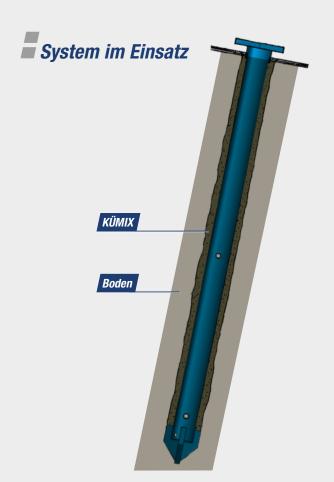
KÜBOLT ® Ankerplatte

KÜBOLT ® Ankerplatte

KÜBOLT ® Muttern 6-Kant-Mutter

KÜBOLT ® Muttern

Kontermutter


KÜBOLT ® Muttern Kugelbundmutter

Siehe weiteres Zubehör Seite 41

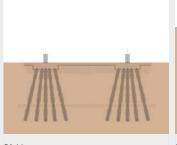
KÜROR® Pfahlsystem

Mikropfähle

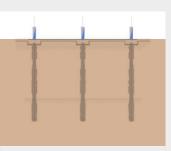
Das **KÜROR**® ist ein gebohrtes Pfahlsystem mit einem glatten Stahlrohr. Das System ist praktisch in allen Böden einsetzbar. Eine Vielzahl untereinander kompatibler **KÜROR**® Komponenten garantieren unterschiedlichste Anwendungsgebiete. **KÜROR**® Pfähle können Lasten von 100 – 2 000 kN aufnehmen. Die Pfähle bestehen aus Rohrelementen von max. 12 m, die mit verschiedenen Verbindungselementen auf beliebige Länge gekoppelt werden. Die **KÜROR**® Elemente sind Stahlrohre mit glatter Oberfläche ohne Gewinde. Darin sind auf Wunsch, auf der ganzen Länge des Pfahls Injektionsventile von ca. 1,3 cm Durchmesser versetzt. Durch diese Ventile kann das **KÜROR**® nachinjiziert werden. Falls erforderlich kann eine Zentrierung des Mikropfahls nach Fertigstellung der Bohrung durch Abstandhalter erfolgen.

Preiswert

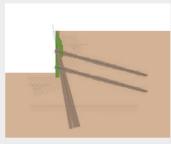
Das KÜROR® ist im Vergleich zu anderen Pfahlsystemen sehr preiswert.


Biegewiderstand

Die Biegewiderstände vom **KÜROR®** sind trotz des hohen Stahlquerschnittes im Vergleich sehr gut.


Geeignet für grosse Lasten und Unterfangungen

Im Vergleich zu anderen Pfahlsystemen wie dem **KSB**® oder dem **KÜ-BOLT**® können **KÜROR**® Mikropfähle grosse Lasten aufnehmen und sind verschweissbar.


Anwendungsgebiete

Pfahlgruppe

Unabhängige Einzelpfähle

Unterfangungen

KÜROR® Technische Daten

KÜROR® S355 | S560 (N80)

		60/5.0	76/10.0	89/7.0	89/10.0	89/12.5	101.6/10.0	114/10.0	114/12.5	114/16.0	127/10.0	127/12.5	152/10.0	159/12.5	168/12.5	178/10.0	178/16.0
Eff. Aussendurchmesser	mm	60	76	89	89	89	101	114	114	114	127	127	152	159	168	178	178
Wandstärke	mm	5	10	7	10	12.5	10	10	12.5	16	10	12.5	10	12.5	12.5	10	16
Stahlquerschnitt A	mm²	869	2 080	1 820	2 480	3 000	2 880	3 280	4 000	4 940	3 676	4 496	4 474	5 753	6120	5 272	8 1 3 0
Gewicht G ²	kg/m	6.82	16.3	14.3	19.5	23.6	22.6	25.7	31.4	38.8	28.8	35.3	35.1	45.1	48	41.4	63.8

Gebrauchslasten NRd ohne Abminderung der Muffe

Fyk/1.75 F	kΝ	176	421	370	503	608	580	665	810	1 002	746	912	908	1 167	1 240	1 069	1 640
entspricht NRd KSB	® Anker	R32/15	R51/7T	R51/7T	R51/9T	T76/6T	T76/8T	T76/6T	T76/10T	T76/10T	T76/8T	T76/10T	T76/10T	T76/12T	T76/12T	T76/12T	

S560 (N80)

Fyk/1.75 F	kN	278	664	582	793	920	1 049	1176	1 687	2 600
entspricht NRd KSE	8® Anker‱	R51/35	T76/6T	T76/6T	T76/8T	T76/12T	T76/12T			

Die Lieferfrist aller $\textbf{\textit{KÜROR}}^{\otimes}$ beträgt mindestens 2 – 3 Wochen.

Stahlqualität

EN 10025	UNI 7070	API 5CT	Fliessgrenze	. Zugfestigkei	Dehnung	Zusam	nmenset	zung		
			min. N/mm²	min. N/mm²	%	С	Mn	Р	s	Si
S 235	Fe 360	-	235	340-470	26	0.17	1.40	0.035	0.035	0.350
S 275	Fe 510	-	275	410 – 560	22	0.18	1.50	0.035	0.035	0.350
S 355	Fe 510	-	355	490-630	22	0.22	1.60	0.035	0.035	0.550
-	-	J 55	379	517	24	0.37	1.45	0.030	0.030	0.350
-	-	K 55	379	655	19.5	0.37	1.45	0.030	0.030	0.350
S560	=	N 80	551	689	18.5	0.36	1.45	0.030	0.030	0.350

Weitere Angaben siehe:

Siehe Ankerzubehör Seite 41

Legende

Berechnungsformeln

Widerstandsmoment

$$\mbox{W cm}^{3} = \frac{\mbox{Π}}{\mbox{32}} \times \frac{\mbox{De}^{4} - \mbox{Di}^{4}}{\mbox{De}} \label{eq:wcm}$$

Querschnittsfläche

$$S \ cm^3 = \ \frac{\Pi}{32} \ \times \ De^2 - Di^2$$

Gewicht kg/m

 $\text{Kg/m} = (\text{De} - \text{Sp}) \times \text{Sp} \times \Pi \times 0.00785$

De = Aussendurchmesser // Di = Innendurchmesser // Sp = Wanddicke // π = 3.14

Zubehör

Steckplatte

Injektionsöffnung (12/16 mm)

Nachinjektionsventil (12/16 mm)

Aufgeschweisster Pfahlfuss

Aufgeschweisste Bohrkrone

Injektionsadapter

Einhebe-Adapter

KÜROR® Grundlagen

1. Abminderung

Bei der Bemessung von Mikropfählen stellen die diversen Schwächungen im Pfahl einige Schwierigkeiten dar. Der innere Tragwiderstand wird durch diese Details vermindert. Schwächungen der Festigkeit durch Längsverbindungen und Querschnittsverminderungen sind teilweise unbekannt. Es muss mit folgenden Abminderungen gerechnet werden:

- Zugfestigkeit in den Längsverbindungen
- Verbund zwischen Pfahlrohr und Zementmantel
- Abminderungen der Festigkeit durch Injektionsventile
- Abminderungen der Festigkeit durch Herstellertoleranzen
- Spitzendruck

2. Längsverbindung

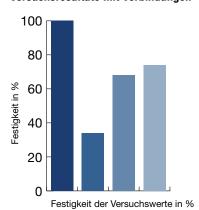
Die ROR-Pfähle sind aufgrund ihrer diversen Schwächungen schwierig zu bemessen. Weil die Längsverbindungen die Zugfestigkeit erheblichen. Die Firma Küchler Technik bietet drei verschiedene Längsverbindungen für **KÜROR®** Pfähle an. Die Verbindung Male/Female ohne Verbindungsstück ist auf Zug nicht geeignet.

Die Festigkeitsabminderung für die Längsverbindungen auf Zugbetragen

Male/Female ~ 60 % Abminderung

Male/Male und einer Muffe ~ 30 % Abminderung

Female/Female und Nippel ~ 25 % Abminderung


Die Festigkeitsabminderung für die Längsverbindungen auf Zug betragen:

- 1 Male/Female Abminderung ~ 60 % abminderung
- 2 Male/Male und einer Muffe ~ 30 % abminderung
- 3 Female/Female und Nippel ~ 25 % abminderung

Voraussichtlich wird die Festigkeitsabminderung für Längsverbindungen auf Druck geringer sein. Da die Schwächung für Male/Female Verbindungen auf Zug aber sehr gross ist, wird empfohlen die Gebrauchslast für Einwirkungen auf Druck ebenfalls zu reduzieren.

Bei Belastungen auf Zug oder Biegung ist zusätzlich die Rissbildung zu prüfen und nach SIA 262 der entsprechende Nachweis zu führen. Zur Gewährleistung der Kraftübertragung ist eine Pfahlkopfplatte oder andere geeignete Massnahmen vorzusehen (vgl. SIA 267 9.6.1.2.2). Aus diesen Gründen wird empfohlen, die *KÜROR®* Pfähle ausschliesslich für Belastungen auf Druck oder Biegung zu verwenden. Bei höheren Ansprüchen empfehlen wir die *KSB®* oder *KÜBOLT®* Produkte

Versuchsresultate mit Verbindungen

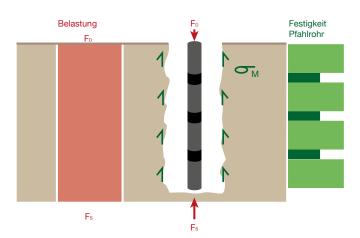
- Referenz glattes Rohr
- Verbindung Male/Female
- Verbindung Male/Male mit Muffe
- Verbindung Female/Female mit Nippel

3. Herstellertolleranzen

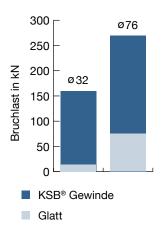
Die Toleranzen der Querschnittsparameter sind für Kreisrunde Querschnitte in der Norm EN 10219-2 geregelt. Für einen Querschnitt mit Durchmesser 76 mm und Wanddicke 8 mm führen diese Toleranzen zu einer Variation der Querschnittsfläche von 1524 mm² bis zu 1894 mm². Die Abweichung der Querschnittsfläche sowie der Festigkeit betragen Maximal + 10.8 % und – 10.8 %.

4. Abminderungen durch Injektionsventile

Für das Verpressen des Mikropfahls mit dem *KÜMIX®*-Injektionsgut werden im Stahlrohr Ventile eingebohrt. Da die Längsverbindungen aber auf Zug eine deutlich grössere Schwächung darstellen, sind die Ventile nicht massgebend. Für ein Rohr 76 mm Durchmesser und 8 mm Wandstärke betragen die Festigkeitsverluste 13 %.


5. Spitzendruck

Ist die Spitzendruckkraft im Rohr zu gross übersteigt die Druckspannung im untenliegenden Injektionsgut ihre Druckfestigkeit. Die kleine Auflagefläche der Rohre führt schon bei kleinen Belastungen zu grossen Spannungsspitzen. Um die Auflagefläche des Pfahls zu vergrössern und somit die Druckspannung im Zement oder Fels durch die Spitzenpfahlkraft zu reduzieren wird es empfohlen die Rohre mit einem Deckel zu zuschweissen und eine Fussplatte anzubringen.


6. Verbund Pfahlrohr und Zement

Durch Versuche wurde die Verbundspannung zwischen Pfahlrohr und **KÜMIX®**-Injektionsmörtel ermittelt. Für eine glatte Oberfläche beträgt sie ungefähr 0.7 N/mm². Allerdings ist hier zu beachten, dass optimal verdichtet werden konnte. Im Feld muss also mit einer kleineren Verbundspannung gerechnet werden. Bei grossem Durchmesser und Wandstärken ist deshalb zu beachten, dass genügend Einbindetiefe vorhanden ist. Ansonsten kann ein Versagen vom Verbund zwischen Rohr und Injektionsgut stattfinden. Bei **KSB®** oder **KÜBOLT®** hingegen ist dieser Verbund durch die Rippen um vielfaches grösser.

Mikropfahl mit Belastung

Versuchsresultate Zugversuch Mantelreibung (mit KÜMIX®)

7. Bemessung

Äussere Tragfähigkeit

Der äussere Tragwiderstand setzt sich aus der Mantelreibung $R_{\text{b}}\,$ und der Spitzenkraft Rs zusammen. Er ist stark von den geologischen Verhältnissen abhängig und ist deshalb nicht Gegenstand dieses Berichts. Versagen der äusseren Tragfähigkeit führt zu einem Absenken oder Herausziehen des ganzen Pfahls inklusive Zementummantelung.

$$R_{a,d} = \begin{array}{c} - \eta_a {}^{\star} R_{a,k} \\ \hline \gamma_{m,a} \end{array} \mbox{ (SIA 267 9.5.2) wobel } R_{a,k} = R_{b,k} + R_{s,k} \label{eq:Radiance}$$

Innere Tragfähigkeit

Der innere Widerstand beschreibt die Tragfähigkeit des Pfahls selbst. Ist der Widerstand überschritten ist ein Versagen des eingebauten Rohres möglich. Eine andere Versagensmöglichkeit für die innere Tragfähigkeit ist das Versagen im Verbund zwischen Rohr und Zementmantel. $R_{i,d} = \eta_i * R_{mat,d} \mbox{ (SIA 267 9.5.2)}$

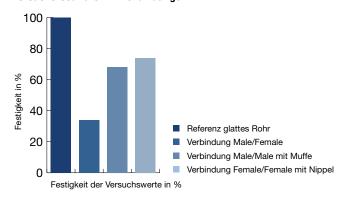
$$R_{i,d} \approx \frac{R_{\text{mat},k}}{1.75} \qquad \text{(wird empfohlen)}$$

Vereinfachend kann Rmat,k für Mikropfähle mit der Streckgrenze vom $\it K\ddot{U}ROR^{@}$ gleichgesetzt werden. Der Widerstand vom Injektionsgut kann vernachlässigt werden.

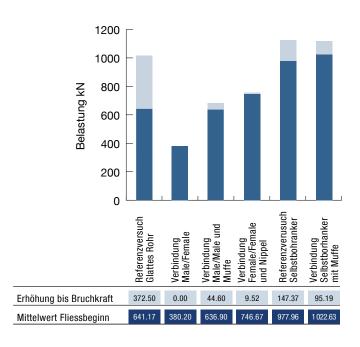
KÜROR® und KSB® im Vergleich

Die **KSB**® Selbstbohranker stellen eine geeignete Alternative dar. Sie sind zwar etwas teurer als **KÜROR**® Pfähle aber haben einen deutlich geringeren Arbeitsaufwand bei der Erstellung der Pfähle. So können in gleicher Zeit wesentlich mehr **KSB**® Anker gebohrt werden als **KÜROR**® Pfähle.

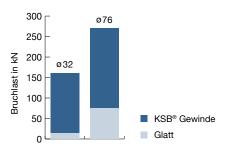
In den Zugversuchen wurde ebenfalls die Festigkeit von Selbstbohrankern mit und ohne Verbindung ermittelt. In diesen Versuchen wurde festgestellt, dass die *KSB®* Anker eine höhere Zugfestigkeit bei gleichem Stahlquerschnitt aufweisen. Die höhere Festigkeit der Selbstbohranker ist auf die Kaltverformung beim einrollen des Gewindes beziehungsweise die Gefügeveränderung im Gewinde zurückzuführen. Bei den Selbstbohrankern ist die Verbindung wie nach SIA 267 9.6.1.3 gefordert, stärker als der Rohrquerschnitt. Bei den *KÜROR®* Pfählen ist dies nicht der Fall. Auf Zug haben Versuche gezeigt, dass die Verbindungen deutlich schwächer sind.


KÜR	ND®	
NUN	יחט	

	10		R
ı	12	B	•


Vorteile	Vorteile
Preiswert	Unverrohrte Bohrung
Guter Knickwiderstand	Geringerer Arbeitsaufwand
Hohe Einzellasten auf Druck	Gute Längsverbindung
Geeignet für Gebäudeunterfangungen	Durchgehendes Gewinde
Einsatz mit Strumpf möglich	Geprüftes System
	Verfügbarkeit
	Keine Abminderungen

Nachteile	Nachteile
Abminderung durch Längsverbindungen	Teureres Material
Verrohrte Bohrung	
Handling	
Glatte Oberfläche	
Wasser- oder Luftspülung	


Versuchsresultate mit Verbindungen

Zugversuche im Vergleich glattes Rohr ($K\ddot{U}ROR^{@}$) und gerolltes Rohr ($KSB^{@}$)

Versuchsresultate Zugversuch Mantelreibung (mit KÜMIX®)

KESA Erdspreizanker

Erdspreizanker < 50 kN

Funktion

5 x grösserer Aussendurchmesser, max. Belastung 50 kN auf Zug

Der *KESA* («Küchler Erdspreizanker») ist der Sofortanker, der zum Einsatz kommt wenn es um Hangsicherungen, Erosionsschutz, Unterstände und Zelte geht. Aber auch bei Traglufthallen, Hohlraumbefestigungen und diversen Befestigungsarbeiten kommt er zum Einsatz. Der *KESA* ist die einfache und schnelle Lösung bei einfachen Verankerungen.

Ihre Vorteile

- Sofortanker
- Einfache und schnelle Lösung bei einfachen Verankerungen
- Ideal für Hangsicherungen, Erossionsschutz, Unterstände und Zelte

KESA-Anker und Zubehör

KESA Spreizanker

12 mm, inkl. aufgeschweisster Hülse

KESA Ankerstange

12 mm

KESA Erdankerplatte

KESA Netzplatte

zu Erdanker 12 mm

KESA Mutter

zu Erdanker 12 mm

K Klebepatronen

KESA-Versetzwerkzeuge

KESA Stützrohr

12 mm, zu Erdanker

KESA Spindel

zu Stützrohr 12 mm

KESA Schlagaufsatz

12 mm

KESA Hydraulische Zylinder manuell

KESA Hydraulische Zylinder automatisch

Ankerzubehör

K Ankerstrumpf schwarz / weiss

Federkorbdistanzhalter aus PVC

Injektionsschläuche und Adapter

K Injektionsschläuche

aus HDPE Ø 13, 16, 20, 25, 32 mm

K Injektionsspitze

Ø 16 mm

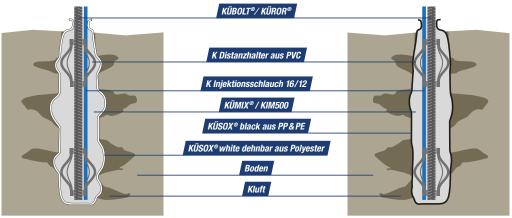
K Nachverpressventil

inkl. Quetschhülse Ø 16 mm

K Injektionsadapter schraubbar, Gewinde selbstschneidend Ø 13, 16, 20, 25, 32 mm

Gewindeschneider

für Spitze Ø 16 mm


K Injektionszange

Ø 16 mm

Strumpf und Federkorbdistanzhalter

KÜSOX® white aus Polyester (dehnbar)

Ideal mit KÜMIX® oder KIM500.

KÜSOX® black aus PP & PE gewebt (widerstandsfähig)

nur als Rolle erhältlich

Die KÜSOX® Ankerstrümpfe dienen zur kontrollierten Verfüllung des Bohrlochs durch Injektionsgut, ohne Beeinträchtigungen durch Wegfliessen von Klüften, Gehängeschutt und Hohlräumen.

KÜSOX® white aus Polyester, dehnbar	Artikelnummer	Тур	Max. Bohrloch mm	Durchmesser mm	Rollenlänge m
	18-30120	120	200	80-230	50
	18-30300	300	400	190 – 430	50

KÜSOX® black aus PP&PE gewebt	Artikelnummer	Тур	Max. Bohrloch mm	Durchmesser mm	Rollenlänge m
einfach	e Naht 18-31 068	68	53	68	25
	18-31100	100	85	100	25
	18-31 125	125	110	125	25
	18-31140	140	125	140	25
	18-31160	160	145	160	25
	18-31180	180	165	180	25
	18-31 200	200	185	200	25
	18-31 250	250	235	250	25
	18-31 300	300	285	300	25
doppelte	• Naht*_18-32068	68	53	68	25
	18-32125	125	110	125	25
	18-32140	140	125	140	25
	18-32160	160	145	160	25
	18-32180	180	165	180	25
	18-32200	200	185	200	25
	18-32220	220	205	220	25
	18-32250	250	235	250	25
	18-32300	300	285	300	25

^{*} Lieferung auf Anfrage / Lieferfrist ca. 3 Wochen

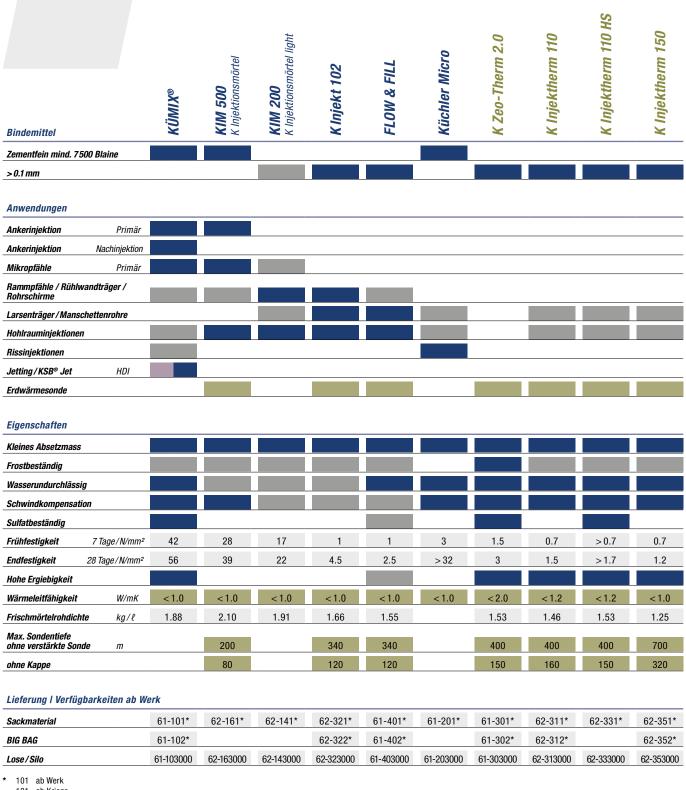
Ideal für Zementsuspensionen // Auf Wunsch auch in 50-m-Rollen erhältlich Andere Durchmesser auf Anfrage.

nur als Rolle erhältlich

Federkorbdistanzhalter aus PVC

Artikelnummer	KÜBOLT® Typ	Innendurchmesser mm	Wand- stärke	Bogenweite mm	Pack Einheit	Gewicht kg/Stk.
18-200 20 070		17.0	1.5	70	600	0.03
18-200 25 060	20	21.2	1.9	60	500	0.04
18-200 25 080	20	21.2	1.9	80	500	0.04
18-20032080	25/28	28.2	1.9	80	400	0.04
18-200 32 125	25/28	28.2	1.9	125	100	0.04
18-200 40 085	32	34.0	3.0	85	200	0.09
18-200 40 100	32	34.0	3.0	100	200	0.12
18-200 50 100	40	44.0	3.0	100	150	0.14
18-200 55 125		49.0	3.0	125	125	0.18
18-20063125	50	57.0	3.0	125	100	0.22
18-20075125	63.5	67.8	3.6	125	80	0.28
18-200 90 170	75	84.6	2.7	170	60	0.30
18-201 10 150		103.6	3.2	150	40	0.38
18-201 40 190		131.8	4.1	190	100	0.63
18-201 60 210		151.8	4.1	210	100	0.65

Dient zur Zentrierung des Ankerstabs im Bohrloch. // Andere Bogenweiten auf Anfrage.


K Klebepatronen

 K Kunstharz
 18-1128300
 28/300
 28/300
 6ewicht kg/Stk.

 K Zement
 18-1128300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300
 28/300

Injektionsmörtel – Bindemittel

¹⁰¹ ab Kriens

Geothermie

Jet

geeignet

Unsere Empfehlung

Sämtliche Produkte können mit den K MUNGG- oder Gertec-Pumpen verarbeitet werden.

Detaillierte Angaben finden sie auf den Folgeseiten.

¹⁰² geliefert Werkhof

¹⁰³ geliefert Baustelle

Anker und Pfähle

KUMIX®
der Klassiker

KIM 500 der Expandierende

KIM 200 der Verfüllmörtel

Technische Angaben	der Klassiker	der Expandierende	der Verfüllmörtel			
Artikelnummer	61-10	62-16	62-14			
Beschrieb	 Permanente und temporäre Anker Nägel Nachinjektionen Mikropfähle Verpresspfähle Bodeninjektionen Tunnel- und Unterwasserinjektion Düsenstrahlverfahren 	 Permanente und temporäre Anker Nägel Mikropfähle Verpresspfähle Bodeninjektionen Tunnel- und Unterwasserinjektion 	Verfüllen von Rammpfählen Rühlwänden und Tunnelrohrschirmen Mantelmischungen von Manschettenrohren und bei Solidierungen zum Auffüllen von Hohlräumen wie z.B. hinter Tunnelwänden Tübbingen Rohrstossungen und Bohrlöchern			
Eigenschaften	 Gleichwertig zu CEM I 52.5 Ökologisch dank 30 % CO₂-Reduktion gegenüber Zement Thixotrop Schwindfestigkeit Sulfatbeständig Wasserundurchlässig Sehr fein gemahlen Ergiebig und einfach zu mischen Hohe Früh- und Endfestigkeit 	 Thixotrop Wasserundurchlässig Expandierend Hohe Früh- und Endfestigkeit Einfach zu mischen und sehr gute Pump- und Fliessfähigkeit 	 Einfach zu mischen Verarbeiten und pumpen 			
Körnung	Feinstzement 7 500 cm2/gr.	zementfein	< 0.5 mm			
Druckfestigkeit 7d 28d	W/F 0.40 42 N/mm² 56 N/mm²	W/F 0.20 28 N/mm² 39 N/mm²	W/F 0.20 17 N/mm² 22 N/mm²			
Frischmörteldichte	W/F 0.40 1.88 kg /ℓ	W/F 0.20 2.10 kg/l	W/F 0.20 1.91 kg /ℓ			

Lieferung

	1	Sack	41	.ose	1,2	³ Sack	2,3	Lose	2,3	Sack	^{2,3} L	ose
Lieferform	Sack	*△4Palette	Silo	*Big Bag	Sack	Palette	Silo	*Big Bag	Sack	Palette	Silo	*Big Bag
Einheit	25 kg	Tonne	Tonne	Tonne	25 kg	Tonne	Tonne	Tonne	25 kg	Tonne	Tonne	Tonne

- 1 Lieferung ab Kriens, (Lastenzüge 24 t Palettenware ab Werk)
- 2 Lieferung ab Werk Holderbank/Bex
- 3 Lieferung ab Werk Sennwald
- 4 Lieferung ab Werk Bötzingen
- Δ Lieferfrist von ca. 2−5 Arbeitstagen
- * Auf Anfrage

K Kraftmessdosen

Bei Ankerarbeiten ist es immer nötig, die fertigen Anker auf ihr Verhalten zu prüfen.

Unsere Geologie macht es häufig unmöglich, das Verhalten der Anker genau abschätzen zu können und darum sind Ankerprüfungen von grösster Wichtigkeit.

Anwendungen

- Überprüfung und Langzeitbeobachtung der am Ankerkopf wirkenden
- Überwachung von Anker- und Stützlasten im Verbau, untertägige Hohlräume, im Tunnel und Stollenbau, im Böschungsbau, in offenen Baugruben, an Stützmauern, bei Baugrubenverbauungen und im Über- und Untertagebau
- Überprüfung von Pfahllasten

K Kraftn	nessdose	Artikelnummer	kN 600	1000 2000	Durchme Aussen	esser mm Innen	Höhe mm	Gewicht kg
6	mit Manometer*	40-21 0600			220	90	55	12.90
	hydraulisch-elektrisch	40-202000			315	165	75	35.00
	mit Dehnmessstreifen	40-221000			140	100	80	3.50

K Ablesegerät zu Kraftmessdose Digital komplett	Artikelnummer	kN 600	1000	2000	,
	40-402000				

1	40-41 090				

K Messkabel inkl. Stecker	Artikelnummer	Kabellänge m		
	40-3005	5		
	40-3010	10		
	40-3020	20		
	40-3030	30		
	40-3050	50		

K Winkelplatte zu Kraftmessdose	Artikelnummer	Neigung in Grad °	Zentrumsloch mm	
	40-1122015	15	110	
	40-1122020	20	110	
	40-1122030	30	110	

* Lieferung auf Anfrage / Lieferfrist ca. 8 Wochen

Anker- und Kraftmessgeräte

in der Geotechnik

Im Fels- und Grundbau werden Anker als Bauelemente eingesetzt, die den Baugrund durch Aufnahme von Längs- und Querkräften stabilisieren. Der messtechnischen Prüfung und Überwachung der Vorspannkraft von Ankern als tragende Elemente eines Bauwerks kommt daher insbesondere bei Dauerankern eine wichtige Bedeutung zu.

Bei leichten Boden- und Felsankern wird die Vorspannkraft meist im Zuge des Einbaus durch einen auf ein Solldrehmoment eingestellten Drehmomentschlüssel sichergestellt. Bei dieser Vorgehensweise ist es jedoch empfehlenswert, den Drehmoment des Schlüssels durch den Einbau von Kraftmessgeräten an einzelnen Ankern zu kontrollieren.

Bei leichten Boden- und Felsankern mit grosser Freispiellänge und bei den schweren Bauformen, bei denen im Allgemeinen ein Zuggerät zum Spannen eingesetzt wird, sollte die Vorspannkraft immer durch Ankerkraftmessgeräte überwacht werden. Sie bieten zudem den Vorteil, die zeitliche Entwicklung der Vorspannkraft zu beobachten, was mit anderen Methoden wie z.B. dem Abhebeversuch nur sehr umständlich möglich ist.

Permanent eingebaute Kraftmessdosen bieten neben der Möglichkeit, die Vorspannkraft kontinuierlich festzustellen, auch den Vorteil, die Messwerte durch Fernübertragung aufzeichnen zu können oder sie durch eine Messwerterfassungsanlage nach einem vorgegebenen Messrhythmus automatisch abzufragen.

Anwendungsbeispiel

- Überprüfung und Langzeitbeobachtung der am Ankerkopf wirkenden Kräfte
- Überwachung von Anker- und Stützlasten im Verbau, untertägige Hohlräume, im Tunnel- und Stollenbau, im Böschungsbau, in offenen Baugruben, an Stützmauern, bei Baugrubenverbauungen und im Über- und Untertagebau
- Überprüfung von Pfahllasten

Die Kraftmessdosen der Küchler Technik AG sind hydraulische Kraftmessgeräte, die in Verbindung mit Messanzeigegeräten die Messwerte analog oder digital zur Anzeige bringen. Die für die Ankerkraft vorbereiteten Kraftmessgeräte sind hochpräzise. Mit diesen werden am Ankerkopf Spannkräfte auf einfache, preiswerte Art erfasst und direkt angezeigt. Die Ankerkraftmessgeräte dienen zur laufenden Überwachung der von Ankern und anderen Rückverankerungsstäben und -kabeln eingebrachten Kräften.

Dem Messzweck entsprechend ist der Krafteinleitungskolben designt. Die auf den Kolben wirkende Kraft wird in einen hydraulischen Druck umgesetzt und auf das angeschlossene Messanzeigegerät übertragen. Die Messgeräteskala kann in verschiedene Einheiten, z. B. kN, daN oder andere, ausgelegt werden. Der Kolbenhub beträgt maximal 0.5 mm.

K Ankermesstechnik

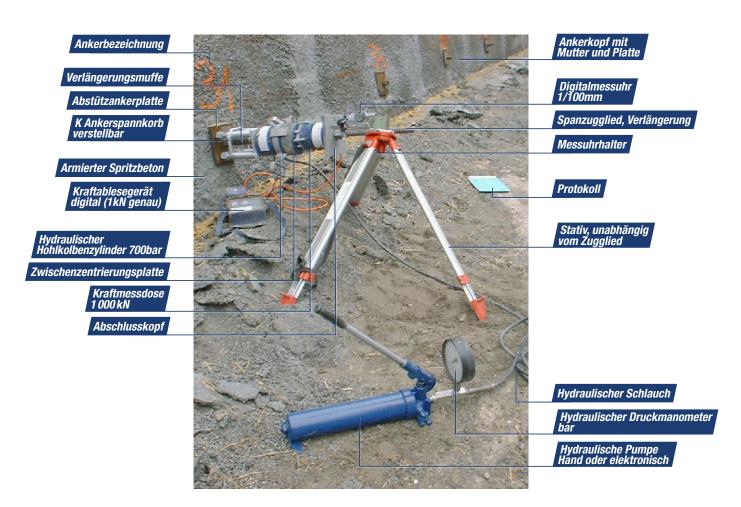
Unser Prüfsystem

Optimale Messgenauigkeit

Über moderne und präzise Messgeräte für optimale Messergebnisse durch digitale Messuhr (0.001 mm) und digitale Kraftmessung (1 kN). Dabei legen wir grossen Wert auf die Einhaltung der SIA-Normen.

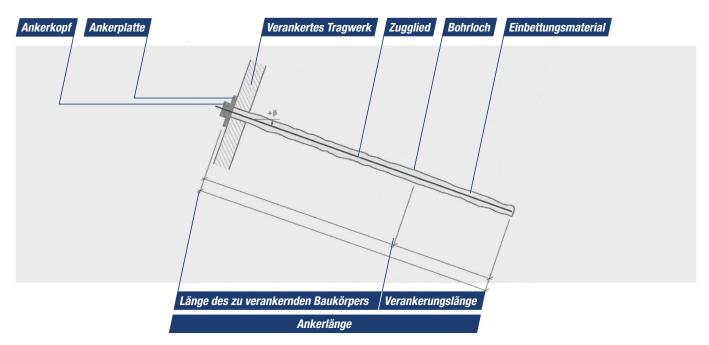
Die Praxis überrascht immer wieder die Theorie

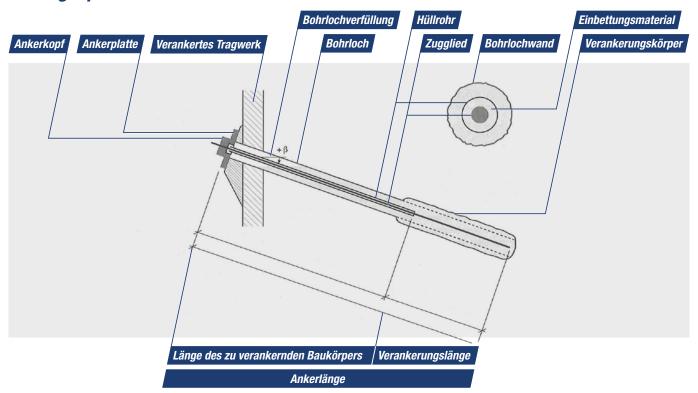
Durch unsere laufenden Prüfarbeiten stellen wir vermehrt fest, dass die vorgeschriebenen Ankerlängen respektive die Systeme nicht immer optimal den geologischen Verhältnissen angepasst sind. Durch unvorhergesehene Bodenverhältnisse (Injektionsverluste, wasserführende Schichten, Nichterreichen des Felsens usw.) lässt sich durch vorgängig eingebaute Versuchsanker oder durch laufende Stichproben mehr Transparenz über die Ankerarbeiten geben.


Selbst entwickelte Prüfkomponenten

Auf reibungslose Prüfeinsätze legen wir einen grossen Wert. Daher entwickelten wir einen einstellbaren K Ankerspannkorb, womit sich Unebenheiten und die genauen Prüfwinkel mit wenigen Handbewegungen einstellen lassen.

Fachkompetenz bis zum Schluss


Von der Beratung und Lieferung des optimalen Systems über die Instruktion und am Ende durch unsere Ankerprüfung gewährleisten wir eine zusätzliche Qualitätssicherung am Bau und unterstützen somit auch die SIA-Normen, welche das Prüfen der Anker vorschreibt.



Begriffe Ankerspannprobe

Vorgespannter Anker

Prüfen von ungespanntem Anker

Schlaffe Nägel / Ankernägel

Ausziehversuche

mindestens 3 Stück

Zugproben

mindestens 3 Stück pro Untergrundbereich oder 5 % aller Anker

Zweck

Der Versuchsanker wird für einen Ausziehversuch eingebaut und ist mit einer beschränkten Verankerungslänge Iv mit freier Ankerlänge If ausgebildet.

Beim Versuchsanker muss bei einem Ausziehversuch mit einer Zerstörung der Einbettung Ra gerechnet werden, er dient daher nur für Versuche.

Vorbereitung des Versuchsankers

- Bohrlochtiefe wie die geplanten Anker
- Die Verankerungslänge Iv mindestens 3 m und die restliche Länge wird mit einem PE-Hüllrohr als freie Ankerlänge If ausgebildet.
- Das Widerlager bzw. Spritzbeton muss die volle Prüfkraft ohne Verschiebungen aufnehmen können.
- Der Anker ist mit 90° zum Widerlager einzubauen.
- Als Zugglied wird der nächstgrössere Ankertyp genommen $(F_p > R_i \text{ des Bauwerksankers, z. B. } \textit{KSB} R 32/15 für \textit{KSB}$ R 32/20).
- Der Bohrlochdurchmesser muss gleich sein wie der bei den Bauwerksankern.
- Die Einbauhöhe des Ankers darf nicht höher als 1.40 m betragen, damit das Stativ für die Deformationsmessung aufgestellt werden kann

Nägelkräfte (schlaff)

120%	120% = F _{tk}	F _{PV} Prüfkraft bei Versuchsanker
110%	(Bruchgrenze des Zuggliedes)	$(F_{pv} \ge Ri der Bauwerkanker)$
100%	100% = F _{yk} (Fliessgrenze)	
90%		$\mathbf{F}_{\mathbf{p}}$ (Prüfkraft) max. 0.90 von $\mathbf{F}_{\mathbf{yk}}$
80%		
70%	Gebrauchslast max. F _{yk} / 1.35	
60%		
50%		
40%		
<i>30%</i>		
20%		
10%		F _a Anfangskraft 0.10 – 0.15 F _P
0%		

Prüfen von vorgespanntem Anker

Einfache Spannproben

Es muss jeder Anker geprüft werden.

Ausführliche Spannproben

10 % aller Anker, mindestens aber 3 Stück

Ankerversuche

In der Regel 3 Stück pro Untergrundbereich

Messgenauigkeit

Kraft

Maximal 1 kN (am besten mit einer digitalen Kraftmessdose)

Deformationsmessung

Maximal 0.01 mm (am besten mit einer Messuhr mit Stativ von einem Fixpunkt)

■ Versuchsanker

Zweck

- Der Versuchsanker wird für einen Ankerversuch eingebaut und ist mit einer beschränkten Verankerungslänge Iv mit freier Ankerlänge If ausgebildet.
- Der Versuchsanker kann später als Anker gebraucht werden, wenn er die Anforderungen erfüllt und der äussere Tragwiderstand R_a nicht zerstört wird (in der Praxis ist es aber sinnvoll, an die Grenzen der Reibkraft zu gehen, um Aufschluss über den max. äusseren Tragwiderstand R_a zu haben).

Vorbereitung des Versuchsankers

- Bohrlochtiefe wie für die geplanten Anker
- Die Verankerungslänge I_v mind. 3 m die restliche Länge werden mit einem PE-Hüllrohr als freie Ankerlänge If ausgebildet.
- Das Widerlager (Betonriegel, Eisenträger, Spritzbeton usw.) muss die volle Prüfkraft ohne Verschiebungen aufnehmen können.
- Das Widerlager ist mit 90 ° zum Anker einzurichten.
- Als Zugglied wird der nächstgrössere Ankertyp (F_p > R_i oder > 1.67 F_o) des Bauwerksankers (z. B. *KSB* R 32/15 für *KSB* R 32/20) genommen.
- Der Bohrlochdurchmesser muss gleich sein wie jener bei den Bauwerksankern.
- Die Einbauhöhe des Versuchsankers darf nicht mehr als
 1.40 m betragen, damit das Stativ für die Deformationsmessung eingerichtet werden kann.

■ Wartezeiten

bis zur Prüfung resp. Spannung

- 7 Tage nach der letzten Verfüllung oder Nachinjektion
- $-\,$ 10 Tage nach der letzten Injektion, falls die I_{ν} (Verankerungsstrecke) in bindigem Boden ist
- Bei bindigen Böden bringt man viel Spülwasser und Feuchtigkeit in das Bohrloch, womit sich ein Schmierfilm bilden kann.
- Es ist vor allem auf das Injektionsgut, den W/Z-Faktor, die Temperatur, Spannkraft, Verankerungslänge und die Geologie zu achten.
- Siehe unter K Injektionsmörtel oder KÜMIX®

Ankerkräfte (vorgespannt) KSB

120 <i>%</i>			Spannprobe
110%			Prüfkraft (1.25 F_o m ax. $\leq F_p \leq 0.70 F_{tk}$)
100%	$100\% = F_{tk}$		F _{pv} Prüfkraft bei Versuchsanker
90%	(Bruchgrenze des Z	uggliedes)	(mind. F _{tk} oder 1.67 x F _o)
80%	ca. 0.8 von $\mathbf{F}_{tk} = \mathbf{F}_{yk}$	Ţ.	
70%			F _P max. 0.90 von F _{yk}
60%	Fo max. 0.7 F _{tk}		$\mathbf{F_o}$ mind. $\mathbf{F_o} \le 0.6 \ \mathbf{F_{tk}}$
50%	Arbeitsbereich	Fo max. 0.6 F _{tk}	
40%		Festsetzbereich	
30%	\boldsymbol{F}_{o} mind. 0.3 \boldsymbol{F}_{tk}	F _o mind. 0.3 F _{tk}	
20%			
10%			
0%			F _a Anfangskraft 0.10 – 0.15 F _P

Kraftmessdosen Einbau

Die Kraftmessdosen können nach einer ausführlichen Spannprobe eingebaut werden.

Die Küchler Kraftmessdosen geben die momentane Vorspannkraft \mathbf{F}_{o} an und dienen als Kontrolle des Bauwerks.

Die Werte der **Küchler Kraftmessdosen** werden periodisch mit einem speziellen Ablesegerät abgelesen, wodurch man eine laufende Analyse machen und auch die Sicherheit erhöhen kann.

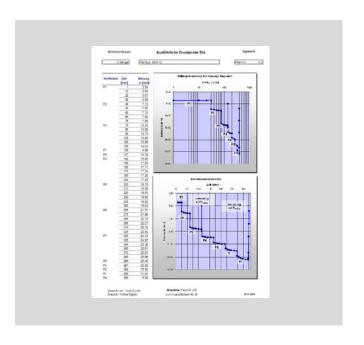
Ankermessausrüstung

Kraftmessung K Ankerspannkorb Kraftablesegerät verstellbar digital (1 kN genau) **Hydraulischer Zylinder** Verbindungskabel **Hydraulische Pumpe** Hand oder elektronisch **Kraftmessdose** 1 000 kN

Deformationsmessung

Stativ unabhängig vom Zugglied	
Digitalmessuhr 1 / 100 mm	
Messuhr-Aufnehmer	

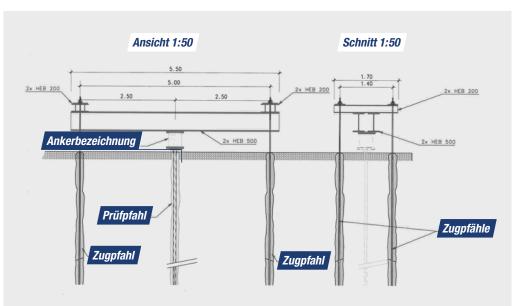
Prüfen von Mikropfählen



Zweck

Dient zur Ermittlung der maximalen Druckkraft und des Kraft-Setzungsverhaltens. Testen des Knickverhaltens

Ausführung


- Für die Druckproben werden mindestens 2 Stück Zuganker als Gegengewicht benötigt, die die Prüflast aufnehmen können. Hierbei ist die Gefahr gross, dass bei hohem Kraftaufbau das ganze Widerlager auf eine Seite abkippt.
- Die Erfahrung hat gezeigt, dass mit 4 Stück Zuganker ein viel stabileres Widerlager erreicht werden kann.
 Es gibt auch andere Varianten, wo man künstliches Gewicht aufbaut, wie z.B. mit aufgestapelten gefüllten Schuttmulden, wobei diese Variante ziemlich viel Platz benötigt.
- Der Kraftbereich zwischen Anfangskraft F_a und Prüfkraft Fpv wird durch 6 gleiche Kraftinkremente ΔF (Kraftstufen) unterteilt (6 Kraftstufen ergeben genau einen Tageseinsatz).
- Auf jeder Kraftstufe ΔF wird bei gleich bleibender Kraft (\pm 1 kN genau) die Verschiebung von den Zeitpunkten = **ti (mind. 60 min resp. 10 min)** 0, 60, 70, 80, 90 Minuten gemessen bis auf die Prüfkraft Fp.
- Für die Verschiebung benötigt man 2 Messuhren, (1/100 mm), womit man den gemessenen Durchschnitt erfassen kann.
- $-\,$ Danach wird die Kraft wieder auf die Anfangskraft \textbf{F}_{a} entlastet, um Aufschluss über die bleibende Setzung zu erhalten.

Anwendungsgebiete

Bezeichnungen

Mikropfähle und Ankerdaten

Kräfte	N _d	Kraft im Pfahl auf Bemessungsniveau
	F _{yk}	Fliessgrenze des KÜROR [®] auf charakteristischem Niveau
	F _{tk}	Bruchkraft des KÜROR ® auf charakteristischem Niveau
	ΔF	Kraftinkremente/Kraftstufen bei Ankerversuchen
Widerstände	V _{RK}	charakteristischer Wert der Querkraft an der Fliessgrenze des Zuggliedes
	M _{Rk}	charakteristischer Wert des Biegemomentes der Fliessgrenze des Zuggliedes
	R_i	innerer Tragwiderstand des Pfahls
	Ra	äusserer Tragwiderstand desPfahls
	R _{mat, k}	Material Widerstand auf charakteristischem Niveau
	R _{mat, k}	Material Widerstand auf Bemessungsniveau
Einwirkungen /	N _d	Einwirkung in Längsrichtung auf Bemessungsniveau
Bemessungswerte	Q_d	Einwirkung in Querrichtung auf Bemessungsniveau
	M_d	Momenten-Einwirkung auf Bemessungsniveau
Geometrische	L	Pfahllänge
Bezeichnungen	A	Querschnittsfläche des KÜROR®
	L _{bd}	Verankerungslänge
Kennwerte	f_t	Zugfestigkeit
	f _y	Fliessgrenze
	E	Elastizitätsmodul
Verschiebungen	ΔL	Gesamtverschiebung Pfahl
_	ΔL_i	Am luftseitigem Zugglied zur Zeit
	△ Lei	Elastische Verschiebung
	△ L _{bl}	Plastische Verschiebung
Widerstandsbeiwerte	γ <i>m</i> 1	Material-Widerstandsbeiwert
	ηί	Umrechnungsfaktor

Korrosionsschutz

Es gilt zu beachten, dass bei Zugpfählen dringend ein Korrosionsschutz angebracht werden muss (vgl. SIA 267 9.6.1.5.4). Für Druckpfähle kann dieser Schutz bei schwach aggressiven Verhältnissen weggelassen werden. Dafür sollte dies mit einem entsprechenden Zuschlag bei der Bemessung berücksichtigt werden.

Grobvorgehen Bemessung

- $-\,$ Bei einer gegebenen Belastung auf Bemessungsniveau Nd sind folgende Nachweise zu erbringen Nachweis: $N_d < R_i$ und $N_d < R_a$
- Der äussere Tragwiderstand hängt von den geologischen Bodenverhältnissen ab und ist nicht Gegenstand dieses Berichts

$$-$$
 Ri = ηi * R_{mat,d} = 0.8 * $\frac{A * fy}{1.15}$ (nach SIA-Normen)

wobei:
$$R_{mat,d} = \frac{A * fy}{Y_{m1}} = \frac{A * fy}{1.15}$$

Für Druckpfähle wird empfohlen: Ri $\approx \frac{R_{\text{mat},k}}{1.75}$

Kräfte	F	Zugkraft im Anker
	F _{sk}	charakteristischer Wert der Zugkraft an der Fliessgrenze des Zuggliedes
	F _{tk}	charakteristischer Wert der Bruchkraft des Zuggliedes
	Fpv	Prüfkraft bei Ankerversuchen
	F _p	Prüfkraft bei Zugproben
	Fa	Anfangskraft bei Ankerversuchen und Zugproben
	F _o	Festsetzkraft
	ΔF	Kraftinkremente bei Ankerversuchs-Zugproben (Kraftstufen)
	V_{Rk}	charakteristischer Wert der Querkraft an der Fliessgrenze des Zuggliedes
	M _{Rk}	charakteristischer Wert des Biegemomentes der Fliessgrenze des Zuggliedes
Widerstände	Ri	innerer Tragwiderstand des Ankers (Kraft an der Fliessgrenze F _{yk})
	Ra	äusserer Tragwiderstand des Ankers (max. Kraft von der Einbettung im Grund)
	R	massgebender Tragwiderstand des Ankers (kleinerer Wert von Ri und Ra)
	R_d	Tragwiderstand
Bemessungswerte	S _d	Beanspruchung (generell)
	F _d	einwirkende Zugkraft
	V_d	einwirkende Querkraft
	M _d	einwirkendes Biegemoment
Geometrische	1	Ankerlänge
Bezeichnungen	I f	wirksame freie Ankerlänge
	I fr	freie Ankerlänge Zugproben (inkl. Verlängerungszugglied)
	I _v	Verankerungslänge
	В	Ankerneigung bezogen auf die Horizontale ($\beta > 0$: Anker fallend)
Kennwerte	f _{tk}	Prüfwert der Zugfestigkeit des Zuggliedes (N/mm²)
	Fy	Rechenwert der Fliessgrenze des Zuggliedes (N/mm²)
	f _{yk}	Prüfwert an der Fliessgrenze des Zuggliedes
	E	Elastizitätsmodul des Zuggliedes (kN/mm²)
	Α	Querschnittsfläche des Zuggliedes (mm²)
	k	Kriechmass
Verschiebungen	ΔΙ	Beanspruchung (generell)
	ΔI_i	einwirkende Zugkraft
	△ I _{el}	einwirkende Querkraft
	△ I _{bl}	einwirkendes Biegemoment
		-

Bauelement, das über ein Zugglied Kraft in den Baugrund überträgt
Pfahl, bei dem während oder nach Erstellen Mörtel- oder Zementinjektionen ausgeführt werden
Anker, der mit einer Kraftmesseinrichtung ausgerüstet ist
Anker, der primär Zugkräfte oder Zug- und Querkräfte in den Baugrund überträgt
Schlankes Bauelement zur Übertragung von Lasten und Kräften in den Baugrund
Anker, der primär Zugkräfte in den Baugrund überträgt
Gesamtheit der Ankermassnahmen, die hauptsächlich durch Einleiten von Zugkräften in den Baugrund einen Beitrag zur Tragfähigkeit des Bauwerks leisten
Anker resp. Pfähle an denen Belastungsversuche zur Bemessung durchgeführt werden
Anker, der über ein Zugglied in der Grösse definierte Zugkräfte in den Baugrund überträgt
Ankerteil zur Übertragung der Ankerkraft vom Ankerkopf auf die Verankerungszone

Übersicht Pumpen

Injektionsanlagen Durchlaufmischer

	K Mini-Pumpe	<i>MUNGG®</i>	K MUNGG®	K MUNGG® 20F	<i>MUNGG®</i>
	•	•	F	#	#
ℓ/min	0.7-6	16	60	14-60	6.6-17 / 9.8-26
bar	15	30	60	60	60
mm	1	1	2	2	2
	● EP	● EP	EP	• EP	● EP
	Stufenlos			Stufenlos	Stufenlos
	CH 3 Pol	CH 3 Pol	Euro 16 A	Euro 16 A	Euro 16 A
	1.0.LW / 000 V	1 F kW / 220 V	4.0. F. F. LW / 400V	E E I/W / 400V	C 4 LW / 400 V

Antrieb elektrisch

Förderleistung max.

Pumpendruck max.

Körnung max.

Pumpentyp Mengenverstellbar Elektroanschluss

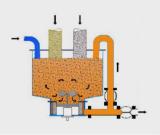
Antrieb hydraulisch						
Mischart			Durchlaufmischer	Durchlaufmischer	Durchlaufmischer	Durchlaufmischer
Mischernutzinhalt	l					
Mischleistung	m³/h					
Pufferbehälter Nutzinhal	t l					
Transportlänge	mm	800	870	1'800	1'900	1'550
Länge	mm	1'000	1'500	2'000	2'100	1'950
Breite	mm	550	530	640	640	660
Höhe	mm	930	530	835	950	910
Gewicht	kg	33	114	160	170	259

Lieferbar mit

Funk			optional	inklusive	inklusive
Kabelsteuerung	optional	optional	optional	optional	inklusive
Verbindung zu Gerlogg			optional	optional	optional
Wasserzähler					
Wassertank					
Silotauglich			optional	optional	optional
Rührwerk im Pufferbehälter					
Stufanias		ontional		inklusive	inklusive

Andere Grössen, Ausführungen und Ausstattungen auf Anfrage

- elektrischer Antrieb, manuelle Bedienung
- elektrischer Antrieb Vollautomat
- hydraulischer Antrieb manuelle Bedienung
- Hochdruck
- Containerbauweise
- Chromstahlausführung
- Wassertank
- elektrischer Antrieb, Frequenzgesteuert
- Exzenter-Schneckenpumpe EP Doppelplungerpumpe PP



Durchlaufmischung

Kollodialmischung

Exzenter-Schneckenpumpe EP

Doppelplungerpumpe PP HD

Übersicht Injektionsstationen

Injektionsanlagen Kollodialmischer

		IS-35	<i>IS-60</i>	<i>IS-80</i>	IS-100	IS-120	
		•	•	#	•	*	
Förderleistung max.	ℓ/min	0-50	0-50	0-100	0-200	0-210	
Pumpendruck max.	bar	50	100	230	100	100	
Körnung max.	mm	2	2	2	2	2	
Pumpentyp		• EP	PP	PP	PP	PP	
Mengenverstellbar		Stufenlos	Stufenlos	Stufenlos	Stufenlos	Stufenlos	
Elektroanschluss		Euro 32 A	Euro 32 A	Euro 32+63 A	Euro 63 A	Euro 32+63 A	
Antrieb elektrisch		11 kW / 400 V	16 kW / 400V	42 kW / 400 V	31 kW / 400 V	42 kW / 400 V	
Antrieb hydraulisch							
Mischart		Kollodialmischung	Kollodialmischung	Kollodialmischung	Kollodialmischung	Kollodialmischung	
Mischernutzinhalt	l	150	150	280	280	280	
Mischleistuna	m³/h	3	3	5.6	5.6	5.6	

Wilschaft		Ronodianinscribing	Nonoulaninschung	Ronoulaninschung	Kulludialillisululig	Ronoulannischung
Mischernutzinhalt	l	150	150	280	280	280
Mischleistung	m³/h	3	3	5.6	5.6	5.6
Pufferbehälter Nutzinhalt	l	200	300	560	560	560
Transportlänge	mm	1'620	2'350	2'270	2'040	2'270
Länge	mm	2'210	2'350	2'270	2'040	2'270
Breite	mm	820	950	2'040	2'150	2'150
Höhe	mm	1'600	2'100	2'400	2'400	2'400
Gewicht	kg	580	980	2'300	2'000	2'500
Länge Breite Höhe	mm mm mm	2'210 820 1'600	2'350 950 2'100	2'270 2'040 2'400	2'040 2'150 2'400	2°27 2°15 2°40

Lieferbar mit

Funk	inklusive	inklusive	inklusive	inklusive	inklusive
Kabelsteuerung	optional	optional	optional	optional	optional
Verbindung zu Gerlogg	optional	optional	optional	optional	optional
Wasserzähler	inklusive	inklusive	inklusive	inklusive	inklusive
Wassertank	optional	inklusive	inklusive	inklusive	inklusive
Silotauglich	inklusive	inklusive	inklusive	inklusive	inklusive
Rührwerk im Pufferbehälter	inklusive	inklusive	inklusive	inklusive	inklusive
Stufenlos	inklusive	inklusive	inklusive	inklusive	inklusive

Andere Grössen, Ausführungen und Ausstattungen auf Anfrage

- E elektrischer Antrieb, manuelle Bedienung
- EA elektrischer Antrieb Vollautomat H hydraulischer Antrieb manuelle Bedienung
- HD Hochdruck
- C Containerbauweise
- PP Doppelplungerpump
- /A Chromstahlausführung
- WT Wassertank
- EF elektrischer Antrieb, Frequenzgesteuert

Exzenter-Schneckenpumpe EPDoppelplungerpumpe PP

Vollautomat / Funk

HD Hochdruck

Interne Registrierung

K Austragsförderschnecke

Weitere Dokumentationen

Geotechnik

Geothermie

Injektionstechnik Anlagen

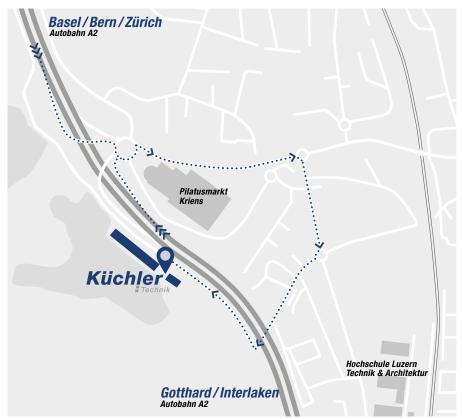
Injektionstechnik Mörtel und Bindemittel

Injektionstechnik Zuschläge

Übersicht Mietgeräte

Firmenbroschüre

Lumesa



Küchler Technik AG Schlundmatt 30 6010 Kriens Schweiz

+41 (0)41 329 20 20

info@kuechler-technik.ch www.kuechler-technik.ch

Autobahnausfahrt Horw Richtung Hochschule Luzern – Technik & Architektur

